

Remote Teaching 'Flipped Classroom' Mode, Data Analytics Summer 2020

> Faculty of Technology, Design and Environment

School of Engineering, Computing and Mathematics

mdatagov@brookes.ac.uk



## **DALT7004: Statistical Programming**

The aim of the module is to introduce core programming techniques in R essential for performing data manipulation, data processing and data analyses of traditional and alternative data sources through practical sessions.

### Learning Outcomes

- 1. Undertake complex data analysis tasks by performing data entry, data manipulation and statistical procedures in R with application to survey data, administrative data, census data and big data.
- 2. Identify and select appropriate built-in functions and implement technical and analytical processes not readily available in the software by using iterative methods and simulations to solve complex problems.
- 3. Identify and evaluate the theoretical aspects of statistical programming.

## **Outline Syllabus**

- Introduction, data types and structures
- Importing and exporting data
- Basic statistical methods
- Basic graphics
- Advanced graphics
- Further statistical methods
- Basic programming
- Further programming
- Packages

## Daily Timetable (Via Google Meet)

| Google<br>Meet | Time          | Monday          | Tuesday         | Wednesday        | Thursday           | Friday        |  |
|----------------|---------------|-----------------|-----------------|------------------|--------------------|---------------|--|
| 1              | 09:00- 09:30  | Introduction to | AM session      | (agree the lectu | re material to be  | self-studied) |  |
| 2              | 09:30 - 11:00 | Self-study      |                 |                  |                    |               |  |
| 3              | 11:00 - 12:00 | Lecture suppo   | Lecture support |                  |                    |               |  |
| 4              | 12:00 - 13:00 | Lunch break     | Lunch break     |                  |                    |               |  |
| 5              | 13:00 - 13:30 | Introduction to | PM session      | (agree the tutor | ial material to be | self-studied) |  |
| 6              | 13:30 - 15:00 | Self-study      |                 |                  |                    |               |  |
| 7              | 15:00 - 16:00 | Tutorial suppo  | ort             |                  |                    |               |  |

#### **Assessment Tasks**

Statistical programming tasks and writing a report.

| Author                        | Title                          | Publisher | Date |
|-------------------------------|--------------------------------|-----------|------|
| Zuur A, Ieno E, & Meesters E. | A Beginner's Guide To R.       | Springer  | 2009 |
| Dalgaard, P.                  | Introductory statistics with R | Springer  | 2008 |



# **DALT7011: Introduction to Machine Learning**

The module aims to provide the students with the principles of computer learning and its applications. It covers the fundamentals of machine learning methodologies, implementations and analysis methods appropriate for machine learning applications. The module will enable students to analyse a machine learning problem, critically evaluate the different approaches that are available, and create an effective solution.

## Learning Outcomes

- 1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
- 2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
- 3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
- 4. Create solutions to machine learning problems using appropriate software.

## **Outline Syllabus**

- Foundations of machine learning and relation to Artificial Intelligence (AI)
- Supervised learning
- Unsupervised learning
- Artificial Neural Networks

## Daily Timetable (Via Google Meet)

| Google<br>Meet | Time          | Monday          | Tuesday         | Wednesday        | Thursday           | Friday          |  |  |
|----------------|---------------|-----------------|-----------------|------------------|--------------------|-----------------|--|--|
| 1              | 09:00- 09:30  | Introduction to | AM session      | (agree the lectu | ire material to be | e self-studied) |  |  |
| 2              | 09:30 - 11:00 | Self-study      |                 |                  |                    |                 |  |  |
| 3              | 11:00 - 12:00 | Lecture suppo   | Lecture support |                  |                    |                 |  |  |
| 4              | 12:00 - 13:00 | Lunch break     | Lunch break     |                  |                    |                 |  |  |
| 5              | 13:00 - 13:30 | Introduction to | PM session      | (agree the tutor | ial material to be | e self-studied) |  |  |
| 6              | 13:30 - 15:00 | Self-study      |                 |                  |                    |                 |  |  |
| 7              | 15:00 - 16:00 | Tutorial suppo  | ort             |                  |                    |                 |  |  |

#### **Assessment Tasks**

Report on machine learning problem

| Author          | Title                                    | Publisher   | Date |
|-----------------|------------------------------------------|-------------|------|
| Bishop, C. M.   | Pattern Recognition and Machine Learning | Springer    | 2006 |
| Flach, P. A.    | Machine Learning: The Art and Science of | CUP         | 2012 |
|                 | Algorithms That Make Sense of Data       |             |      |
| Harrington, P.  | Machine Learning in Action               | Manning     | 2012 |
| Mitchell, T. M. | Machine Learning                         | McGraw Hill | 1997 |



## DALT7014: DATA MINING

This module will provide an introduction to the key concepts in data mining, information extraction and indexing, pattern recognition techniques and various analytical approaches (e.g. regression modelling, etc). It will also discuss what to apply and when with which data, etc.

#### Learning Outcomes

- 1. Apply appropriate data mining techniques and technologies to multi variate, large, sparse data sets and critically analyse the results
- 2. Optimise data mining pathways to enhance system reliability
- 3. Integrate Data Mining approaches with relevant associated techniques

## **Outline Syllabus**

- Approaches to Data Mining and Knowledge Discovery
- The Data Mining pathway
- Indexing and retrieval strategies
- Working with appropriate i measure functions
- The Machine Learning/Data Mining/Big Data continuum
- Natural Language Processing

## Daily Timetable (Via Google Meet)

| Google<br>Meet | Time          | Monday                                                                      | Tuesday                                                                    | Wednesday | Thursday | Friday |  |  |
|----------------|---------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|----------|--------|--|--|
| 1              | 09:00- 09:30  | Introduction to                                                             | Introduction to AM session (agree the lecture material to be self-studied) |           |          |        |  |  |
| 2              | 09:30 - 11:00 | Self-study                                                                  |                                                                            |           |          |        |  |  |
| 3              | 11:00 - 12:00 | Lecture suppo                                                               | Lecture support                                                            |           |          |        |  |  |
| 4              | 12:00 - 13:00 | Lunch break                                                                 | Lunch break                                                                |           |          |        |  |  |
| 5              | 13:00 - 13:30 | Introduction to PM session (agree the tutorial material to be self-studied) |                                                                            |           |          |        |  |  |
| 6              | 13:30 - 15:00 | Self-study                                                                  |                                                                            |           |          |        |  |  |
| 7              | 15:00 - 16:00 | Tutorial suppo                                                              | ort                                                                        |           |          |        |  |  |

#### Assessment Tasks

Evaluate a range of knowledge discovery techniques for use on a given data set. Utilising data mining pathway, data mine a range of given, disparate data sets and writing of a report

| Author                       | Title                                                    | Publisher | Date |
|------------------------------|----------------------------------------------------------|-----------|------|
| Wayne P. Johnson ,           | Making Sense of Data I: A Practical Guide to Exploratory | Wiley     | 2014 |
| Glenn J. Myatt               | Data Analysis and Data Mining, 2nd Edition               |           |      |
| Bater Makhabel               | Learning Data Mining with R                              | Packt     | 2015 |
|                              |                                                          | Pub. Ltd, |      |
| Ian H. Witten, Eibe Frank,   | Data Mining, 4th Edition                                 | Morgan    | 2016 |
| Mark A. Hall, Christopher J. |                                                          | Kaufmann  |      |
| Online resource              | UC Irvine (nd) UC Irvine Machine Learning Repository -   |           |      |
|                              | http://archive.ics.uci.edu/ml/                           |           |      |



# **DALT7016: Data Visualisation**

This module will build on the basic data visualisations introduced in the compulsory modules. It will cover information design, interaction design and user engagement; state of the art tools to build useful visualisations for different types of data sets and application scenarios; mapping.

### **Learning Outcomes**

- 1. Critically analyse data visualisation approaches with respect to human sensory modalities.
- 2. Create appropriate visualisations for temporal, dynamic, and high dimensionality data.
- 3. Devise methodologies for data interaction to facilitate exploratory data analysis.

## **Outline Syllabus**

- The human perceptual system
- Representing complex data
- Representing dynamic and temporal data
- Exploratory data analysis
- Visualisation software tools

| Google | Time          | Monday          | Tuesday                                                                     | Wednesday | Thursday | Friday |  |  |
|--------|---------------|-----------------|-----------------------------------------------------------------------------|-----------|----------|--------|--|--|
| Meet   |               |                 |                                                                             |           |          |        |  |  |
| 1      | 09:00- 09:30  | Introduction to | Introduction to AM session (agree the lecture material to be self-studied)  |           |          |        |  |  |
| 2      | 09:30 - 11:00 | Self-study      |                                                                             |           |          |        |  |  |
| 3      | 11:00 - 12:00 | Lecture suppo   | Lecture support                                                             |           |          |        |  |  |
| 4      | 12:00 - 13:00 | Lunch break     | Lunch break                                                                 |           |          |        |  |  |
| 5      | 13:00 - 13:30 | Introduction to | Introduction to PM session (agree the tutorial material to be self-studied) |           |          |        |  |  |
| 6      | 13:30 - 15:00 | Self-study      |                                                                             |           |          |        |  |  |
| 7      | 15:00 - 16:00 | Tutorial suppo  | ort                                                                         |           |          |        |  |  |

## Daily Timetable (Via Google Meet)

#### **Assessment Tasks**

Part 1: Evaluate a range of different data visualisations on a given set of multi variate, dynamic, data Part 2: Develop a report to visualise data in different formats

| Author                 | Title                                       | Publisher    | Date |
|------------------------|---------------------------------------------|--------------|------|
| Atmajitsinh Gohil      | R Data Visualization Cookbook               | Packt        | 2015 |
|                        |                                             | Publishing   |      |
| Tamar Muzner           | Visualization Analysis and Design           | CRC Press    | 2015 |
| Andy Kirk              | Data Visualisation                          | Sage         | 2016 |
|                        |                                             | Publications |      |
| Mathew Ward, George    | Interactive Data Visualization, 2nd Edition | CRC Press    | 2015 |
| Grinstein, Daniel Keim |                                             |              |      |