

Dean Gordon Placement Report

MSc Data Analytics, Queen’s University, Belfast

Dean Gordon

9/13/2019

1

Abstract

Data on pupils’ preferences for post-primary schools are available from cohorts who transferred in

2017, 2018 and 2019. These have been combined with other data, including pupil-level and school-

level attributes to attempt to identify:

1. How many applications schools are likely to receive in the coming years

2. Where one school undergoes a significant change, which other schools are likely to be

impacted, in terms of applications

A number of methods are examined for predicting the number of first preference applications that a

school will receive in future years, including machine learning models (random forests and neural

networks) and a transition matrix that takes a simple proportion (by gender) of pupils from each

primary school to predict which post-primary school is their first preference. A number of these

methods were able to make useful predictions of the number of first preference applications at each

school, although none were able to make accurate predictions on a pupil level, and indeed we will

show that the pupil data available is not adequate for making these predictions accurately.

The transition matrix, as well as performing best in making predictions of first preference

applications, can be adapted as one way to identify other schools that will be impacted by significant

changes to a school. Second preference data offers another way to identify other schools whose first

preference applications could be impacted by significant changes to a school. The most salient

insights from the methods above are gathered together to inform decision making for a particular

school or set of schools, with this information presented in an interactive application using Shiny.

This report has been redacted to remove any references to individual pupils or schools.

2

1. Introduction
Pupils in Northern Ireland are unconstrained in their selection of preferences for post-primary

schools. However, allocations are constrained by external limits applied to each school, limiting the

number of admissions permitted from primary schools each year. Selection criteria, including

academic selection, are set individually by schools and used to rank applicants: pupils will not be

denied a place for failing to meet a standard, but rather because another pupil has been ranked

higher based on the selection criteria. The Education Authority (EA) is responsible for ensuring

sufficient places are available in appropriate schools for each pupil transferring to post primary

school through their area planning responsibilities.

Forecasting future demand for post-primary school places, taking into account the various categories

of schools (secondary or grammar; Roman Catholic, Non-denominational or integrated; co-

educational or single-sex) is vital for the EA’s area planning goal, which is “to establish a network of

viable schools that are of the right type, the right size, located in the right place, and have a focus on

raising standards.”1 Enrolment data are available, showing the schools to which pupils have been

allocated and recently preference data have been collected, recording first and subsequent

preferences for primary 7 pupils transferring to post-primary schools. The goal of this paper is to

combine the preference data now available with pupil-level and school-level attributes, to gain

insights and make predictions pertinent to strategic area planning that meets the stated objectives

of the EA.

In addition to making predictions about first preference applications to individual schools, this paper

seeks to understand the relationships between schools so as to understand the impact that changes

in one school will have on another. For example, if one school was to close, where would we expect

the pupils who chose it as their first preference to go instead? Or, if a school was to be allowed to

accept more pupils, would that lead to other schools not getting enough applications to fill their

available places? These questions cannot be answered with certainty and there is much local context

and domain expertise that should be applied when looking into them. However, drawing together

the relevant data can be very informative when considering possible answers to these questions.

Therefore, this paper looks at a number of models to make predictions, at a school level, of future

first preference applications. Secondly, it uses second preference data and data about feeder

primary schools for each post-primary school to indicate the relationships between post-primary

schools, using a variety of means to identify which schools are likely to be impacted by changes to a

selected school or schools.

1 https://www.eani.org.uk/school-management/area-planning/what-is-area-planning

https://www.eani.org.uk/school-management/area-planning/what-is-area-planning

3

2 Methods

2.1 Preliminary Investigation
Before exploring methods for predicting first preference applications, we will examine whether the

pupil attributes available are discriminative of school choice at the individual level (although the

purpose of our models is to make accurate predictions for first choice applications at a school level).

The variables available are:

Variable Contains

Post code Post code of pupil

Other Location Variables
Less precise locations variables, such as Super Output Area1 and
Small Area2 have been inferred from the post code

Primary school Department of Education Number

Dayboard yes or no

Special Educational Needs stages 0-5

Attends a special unit yes or no

Free school meals entitled or not entitled

Gender male or female

Date of birth month Number

Date of birth year Number

Religion
Catholic, Protestant, Other Christian, Other non-Christian, none/not
known

newcomer yes or no

In care yes or no

Irish medium unit yes or no

A subset of the data, looking at the 2017 transferring cohort, is created containing only pupils in the

majority set for each characteristic: that is, those who were not entitled to free school meals, did not

have any special needs indicated, were not in care etc. Having created this subset, the only thing to

distinguish pupils was their religion, date of birth, where they lived and primary school. Also

included was whether their first preference was a grammar, secondary or integrated school (even

though this will not be available for making predictions) but ignored the date of birth data, as it may

have reduced the number of ‘identical’ pupils to compare (birthdays earlier in the school year have

been shown to correlate to preference for grammar over secondary schools2, which has been

included explicitly). From this, ten subsets of data were created, consisting of male and female sets

of Catholic, Non-denominational and Integrated schools, with Catholic and Non-denominational

schools further divided into secondary and grammar schools. For each Super Output Area, the

number of distinct schools chosen by pupils with similar attributes (including primary school

attended) and identical preferences for the characteristics of their first preference school is

calculated. This will indicate whether it is possible, with the data available, to determine which post-

primary schools will be selected as first preference by individual pupils.

2.2 Machine Learning Models
To facilitate building models, pupil data and preference data were merged from different sources in

R3 using tidyr4 and dplyr5, and the caret6 package was used with the whole of the 2017 dataset used

for training and 2018 used for testing. The random seed was set to 1 before each model was

created.

2 According to unpublished analysis by the team at SIB

4

2.2.1 Random Forest
A random forest model was created in R (using ranger7) and 10-fold cross validation was used in

model training, with the random forest consisting of 500 trees. In creating the model, class

probabilities were saved so that the probabilities of first preference applications to each school

could be aggregated to estimate first preferences for each school, rather than counting the most

likely first preference of individual pupils.

This method was used as, although not a high dimensionality of data, the algorithms used to

combine the various decision trees and weight them accordingly could be expected to work well to

provide class probabilities given variables that could interact in complex ways.

2.2.2 Neural Network
A neural network was also created in R using the nnet8 package. A 5-fold cross-validation was used

with maximum of 100 iterations for optimising the weights. 200, 1,000 and 5,000 iterations were

also used, but without the cross-validation, due to time considerations. In each case a feed-forward

neural network with a single hidden layer was created. A neural network lends itself to outputting

probabilities for outputs based on a set of inputs. The identical inputs leading to different outputs

will not be helpful for optimising weights, but the model should not become too confident on any of

those outputs. A neural network was also suitable for dealing with the large number of factors in the

primary school and SOA inputs to the model.

2.2.3 Transition Matrix
Instead of training a machine learning model, this approach simply took that proportion of pupils

from each primary school (broken down by gender) who selected each post-primary school as first

preference. Predictions are then made by looking at the number of transferring pupils in subsequent

years and applying the same proportions from each primary school to post-primary schools. The

transition matrix has also been adapted to operate based on the SOA, SA, parliamentary

constituency, travel to work area and ward of a pupil, instead of their primary school. Too small an

area will lead to unstable predictions, as individual pupils will have a large impact on the

proportions. Areas that are too large will fail to capture differences in behaviour of pupils within the

larger groups.

2.3 Additional Analysis
Three methods have been used to identify schools that may be affected by changes to another

school or schools:

1. Transition matrix. A school is chosen and “closed”, meaning each pupil who selected it as

first preference is “sent back” to their primary school and the proportions for the primary

school are adjusted to allow for the “closing” of a post-primary school. Grammar or

secondary preferences are maintained, so “closing” a secondary school will only show the

other secondary schools that share the same feeder primary schools.

2. Second preferences. This shows the second preferences for those whose first preference

was the school that was chosen to “close”. As the second preference data is incomplete,

second preference data over the three years, 2017-2019, are considered together. These

numbers are scaled so that the sum is equal to the number of pupils who went to the school

which was “closed”.

3. First preference, where the selected school is second preference. As above, data from

three years are included. However, the scaling takes into account the number of pupils who

applied to each of the first preference schools.

5

These tables were built into a shiny app to allow for easy exploration.

2.3.1 First and Second Preferences
Missing second preferences are imputed by assigning second preferences in proportion to the

second preferences recorded, for a given first preference. This will not be reliable in all cases (such

as where zero or a small number of second preferences are recorded).

The second preference data will be able to capture the relationship between grammar and

secondary schools that the transition matrix overlooks. Additionally, we expect to see some

similarities between the schools identified by the transition matrix and those identified by both ways

of looking at the second preference data.

We will compare the top six schools identified as likely to be most impacted by: the transition

matrix; second preference where the selected school is first preference; and first preference where

the selected school is second preference. The intersection of schools in each of these top six lists is

computed where there are at least four results in each of the lists. More robust methods, such as

calculating Spearman’s rank correlation coefficient, are not appropriate given the lists, for various

reasons, will have different members. The comparisons will allow an assessment of whether the

transition matrix and second-preference lists are capturing the same relationships between schools.

6

3 Results
The preferences file for 2017-2019 contained 68,772 first preferences, although only 63,066 of these

contained both a pupil identifier that could be linked to the pupil file and a valid post-primary school

identifier. First preferences that contained an invalid school reference were retained to avoid

systematically overestimating first preferences for schools. The 2017 training set contained 20,712

pupils with first preferences, and the test set from 2018 contained 21,011 pupils with first

preferences. The data contains 818 primary schools and classified pupils into one of 197 post-

primary schools.

3.1 Preliminary Investigation
Figure 1 shows the highest number of post-primary schools being selected as first preference by one

of the ten groups of pupils from the dataset of similar pupils.

Figure 1

Each of the ten subsets contained at least one SOA with five similar pupils who selected at least four

different schools of the same type. In two cases, primary schools have pupils, who are

indistinguishable in our data, which have six different first preferences for post-primary schools of

the same type. This indicates that the pupil attributes available are not, in many cases, adequate to

make definitive predictions about school choices, and in many cases can only narrow preferences

down to 3-4 schools.

Maximum number of schools of the same

type selected by similar pupils, per SOA

7

Figure 2 shows lines linking the Kilrea SOA (green circle in figure 1) with the towns containing the

first preference schools selected by pupils across the various categories (religious affiliation;

secondary, grammar; gender).

Figure 2

A number of schools are approximately equal distances from this SOA. Choices may be influenced by

work location of parents or public transport links, but it appears that these pupils have a number of

similar choices and make those choices independently. It is likely that many pupils themselves have

difficulty choosing their first preference school, and so a model based on pupil and school attributes

cannot be expected to perform well with predictions for individual pupils.

3.2 Machine Learning Model

3.2.1 Random Forest Model
The random forest model was able to correctly predict school choices in 36% of cases, taking the

primary school of the pupil as the most important factor, only slightly more important than the Small

Area of the pupil (100 and 97.5 respectively on a normalized measure of variable importance).

Perhaps surprisingly, the SOA was the next most important variable (65.8) and the other location

variable, Travel to Work Area (TTWA) made a smaller, but non-negligible contribution (15.1).

The predictions for first preference applications to each school showed a reasonable predictive

value: the chart below shows the model created on 2017 data applied to 2018 inputs and has an R2

value of 0.89. NAs were removed to calculate the R2, but had been kept in up to this point to reflect

that a valid first preference had not been recorded for all pupils.

8

Figure 3

The blue dots in Figure 3 show where predicted first preferences, to the nearest integer, are equal to

actual first preferences.

3.2.2 Neural Network
Various parameters were tried for the neural network, with results as shown in the table 1, with NAs

removed as above.

Table 1

Summary of R2 values on training and test data of neural networks with various tuning

parameters

Cross-Validation Max Iterations R2 on training data R2 on test data

5-fold 100 0.9812 0.8720

None 200 0.9930 0.8693

None 1000 0.99996 0.8816

None 5000 0.999996 0.8829

9

Although for the fourth configuration max iterations was set to 5,000, convergence was reached

before iteration 2,220. Although the R2 value was similar when the probabilities were aggregated up

and compared on a school level, the accuracy at an individual level was only 8.8%, suggesting that

the model was assigning higher probabilities to more popular schools, but not taking all of the

variables and their interactions into account.

3.2.3 Transition Matrix – Primary School
The transition matrix did not make predictions about individual pupils. Based on a transition matrix

created on 2017 data, accounting for gender and primary school, an R2 of 0.92 was achieved when

applied to 2018 data and 0.90 when applied to 2019 data, with NAs removed as was the case with

the other models.

2014 preference data (which was less complete than 2017-19) was used to create a matrix and this

was applied to 2017-19 data, to check the stability of the matrix approach over time: this showed R2

values of 0.83, 0.81 and 0.78 for 2017 to 2019 respectively. The decreasing values of R2 for the

matrices indicates that their predictive power is likely to reduce over time, although the model from

2014 is still informative, even when applied to 2019 input data. Because there were more missing or

invalid first preferences in 2014, there is a systematic under-prediction of first preferences for 2017-

2019. Some of the less reliable predictions have been circled in Figure 4.

Figure 4

10

In each of the years 2017-2019, the transition matrix has predicted too many first preference

applications for 2 schools, both of which had received negative publicity between 2014 and 2017.

The identity of the schools has been redacted, although the information is in the public domain.

At the other end of the spectrum, predicted first preference applications for another school were

consistently lower than actual first preferences. Estimates for 2017-2019 were based on 2014 first

preferences for three schools that merged to become a single school, and it appears that the

combined school is more appealing than at least one of the original three. Most of the other points

furthest from the line do not apply to the three predictions made for the same school and so may

reflect circumstances that only applied in one or two of the three years, or random variance.

3.2.4 Transition Matrix – Area-based
The SOA transition matrix performed equivalently with the primary school transition matrix, with R2

values of 0.92 and 0.90 for 2018 and 2019 respectively. The formulae for the best fitting straight

lines (ordinary least squares) did not help to choose a preference, with the primary school matrix

returning a formula of Predicted = 1.0175 * Actual + 0.3436 compared to the SOA formula of

Predicted = 1.0219 * Actual -0.05931. Although arguments could be made about the trade-off

between the intercept and the slope, in both cases the differences are very small: this is equivalent

to 1 predicted pupil for every 228 actual pupils, so it is much less than the mean absolute errors,

which range from 14 to 17 across both models and both years (see table below).

A similar matrix was produced using a number of different geographies, none of which performed as

well as primary schools or SOAs. Table 2 summarises all variables used in the transition matrices (all

matrices built on 2017 data and tested on 2018 and 2019):

Table 2

Summary of R2 and Mean Absolute Errors for 2017 transition matrix created using primary school

or geography

Geography R2 2018 R2 2019 MAE 2018 MAE 2019

Primary School 0.92 0.90 13.8 17.1

SOA 0.92 0.90 15.1 17.5

Parliamentary
Constituency

0.91 0.90 15.4 17.6

TTWA 0.91 0.89 15.4 17.5

Ward 0.91 0.89 15.4 18.0

SA 0.90 0.88 16.9 19.6

3.2.5 Comparison of prediction methods
Looking at the R2 values of the models, the performances were similar, although even the worst

performing transition matrix performed better than either of the machine learning models.

However, it needs to be noted that predicting 2017 actual applications for 2018 and 2019

applications would achieve R2 values of 0.91 and 0.87 respectively, also out-performing the machine

learning models. Moreover, as the model is being trained at a pupil level but evaluated at a school

level, we need to be wary of only looking at the R2 values. Using 2017 first preferences as predictions

for 2018 first preferences would result in a line with a slope of 0.95, which is much less desirable

than the 1.02 achieved by the transition matrix, with MAE of 16.3 for 2018 and 19.8 for 2019, also

indicating it is less reliable than any of the transition matrices, with the possible exception of the SA

matrix.

11

3.3 Additional Analysis
The available pupil file is from 2016/17, allowing the transition matrix to be used to project first

preference applications until 2023. The matrix is applied retrospectively so that the chart gives an

indication of the accuracy of the predictions, as well as the predictions themselves. This has been

included in a Shiny app for ease of use, as shown in Figure 5. The points show the actual number of

first preference applications each year, the line shows the predicted number based on the transition

matrix and a dashed line indicates the permitted intake for 2017.

Figure 5

In Figure 5 (taken from the Shiny app), we can see that First Preference Applications to School A

appear slightly difficult to predict, with approximately 20 less applications than predicted being

received in 2018 and 2019. School B appears to have a very stable population in their feeder primary

schools, although the actual number of FPAs has been less stable, whereas School C predictions

were within 6 of actual applications in each of the 3 years. The predicted lines do not always go

through the points showing the actual FPAs, as not all first preferences can be linked back to a pupil

and therefore a primary school.

3.3.1 First and Second Preferences
There are major limitations with the second preference data, in that second preferences are

recorded for less than 20% of pupils. There are likely to be a variety of reasons for this, with the EA

suggesting that some parents may be wary of recording a second preference as they believe it may

harm chances of getting into a first preference school, and also suggesting that even where second

preferences are expressed they may not be recorded on the system as those entering details into

the system are aware that the first preference school is likely to accept the pupil. This suggests that

the data are missing in a non-random way.

Furthermore, looking at top four preferences, there are two instances where preferences for both

Boys’ and Girls’ single-sex schools have been expressed by the same pupil. It is not possible to say

how many other mistakes have been made in recording preferences. Of the 68,772 first preferences

expressed, just 13,276 second preferences are recorded (19.3%) and 5,640 third preferences (8.2%).

Tables have been produced display, for a selected school:

12

 second preferences for that school,

 first preferences where that school is second preference and

 reallocations of pupils from that school, using the transition matrix

A Shiny app (see appendix section 3.2) was used to make it easy to compare these three tables,

allowing intuitions about particular schools to be tested by knowledgeable users. These individual

cases are the most effective way to assess the usefulness of the tables. However, the analysis below

attempts to provide an overview without focusing in on individual cases.

There is only one instance where the transition matrix and the second preference list identified the

same top 6 affected schools, and only two instances where first and second preference tables agree

on the top 6. Table 3 summarises the correspondence between the different tables, with figures in

parenthesis indicating the figures calculated using the SOA for the transition matrix.

Table 3

Summary of similarities between top 6 results in scenario planning for each post-primary school

Measure Transition and 2nd
preference

Transition and 1st
preference

1st and 2nd
preferences

All three tables

Median 3 (3) 3 (3) 3 2 (2)

Mean 3.1 (2.8) 2.9 (2.8) 3.3 2.1 (2.08)

% >= 4
matches

41.1 (37.6) 30.7 (31.6) 40.4 12.4 (11.4)

% >= 3
matches

64.5 (60.6) 60.6 (58.1) 70.8 36.0 (30.7)

% >= 2
matches

84.1 (82.6) 89.8 (87.5) 94.4 69.7 (69.3)

For more than four matches, there is a similar size of overlap between schools identified by the

transition matrix and the 2nd preference table, and those identified by looking at the 1st and 2nd

preference tables. As we reduce our threshold number of matches between the two tables, the size

of the overlap between the transition matrix and 2nd preferences does not keep up with the size of

the overlap between 1st and 2nd preferences. This analysis suggests that the transition matrix can be

used to identify a real relationship between schools. This relationship may be similar to the

relationships that can be identified by looking at 2nd preferences for a school. It is worth noting with

the figures above that the transition matrix preserves preference for a secondary or grammar school

based on first preference, while in 37% of cases this preference was not preserved between first and

second preferences.

13

4. Discussion

4.1 Successes and Limitations
It has not been possible to quantify the usefulness of the methods used to make predictions about

future first preference applications, as it is not possible to say in how many cases the estimates were

close enough for practical purposes. The transition matrix is promising in that it out-performed the

simplest method of predicting that each school would receive the same number of applications as

they did in the previous year, as measured by R2, MAE and the gradient of the line between

predicted and actual. Although 86.75% of pupils were offered a place at their first preference school

in 20199, predicting only first preferences will not allow for predictions to be made about

enrolments, which is crucial to understanding future needs and identifying schools that may become

unviable.

The transition matrix is also used to try to understand the links between schools, so that if there are

changes to one school, the other schools likely to be impacted can be identified. There are a number

of limitations with this approach:

1. It reflects first preferences, but not admissions. Post-primary schools often give priority to

pupils from a primary school with a matching religious affiliation as one of their first

admissions criteria. In one example, having attended an integrated primary school is the 3rd

criterion, after having a sibling enrolled at the school and being an oldest child. In 2016 27%

of applications were from pupils at integrated primary schools, but 39% of those admitted

that year had attended an integrated primary school. Therefore it reflects where pupils,

potentially from a number of schools, would have applied if a particular school was not

available.

2. Comparing the outputs with the second preferences for particular schools, it appears that

there are categories within the different schools of the same type. For example, the

transition matrix tells us that pupils whose first preference is for School A attend primary

school with pupils whose first preferences are mainly for School B, but also School C. The

second preference data, despite its limitations, clearly indicates that, of those whose first

choice is School A, School C is much more popular as a second preference than School B,

which is the third most popular second preference.

Despite these limitations, the simplicity of the approach ensures that the tables produced are

meaningful, if not precise. The transition matrix can be used to identify schools that share the same

feeder primary schools as any school selected, with the estimates of displaced pupils giving a

weighting of those primary schools (based on first preferences rather than admissions).

4.2 Future Enquiries
We hope to have subsequent preferences recorded more accurately in the near future. Reliable

subsequent preference data would allow for predictions of enrolments, although there would be

numerous possible methods to explore for assigning pupils to schools.

The continued collection of data would also allow us to understand how much less reliable estimates

of first preference applications become over time: there is clearly a deterioration of the quality of

estimates, but not enough years of data to quantify this deterioration. We have seen that the

transition matrix performs worst where there are external circumstances impacting on first

preference applications. However, it does account for demographic changes and it would be useful

to be able to make predictions even with a ceteris paribus assumption.

14

The scenario planning uses the transition matrix as a simple model of the relationship between

feeder primary schools and post-primary schools. However, with reliable subsequent preference

data recorded, there would be no need to use the model of transfers between primary and post-

primary schools: instead, data on pupils in a school, or who selected a school as first preference

could be presented. If a scenario such as closing school X was explored, it would then be possible to

state the other preferences (higher or lower) of every pupil in school X, giving an indication of where

extra capacity could be used to facilitate a school closure. Likewise, a scenario of expanding a

school’s capacity could be explored by looking at the schools attended by pupils who would have

preferred to attend the school whose capacity is expanded rather than the school to which they

were allocated.

Despite the rich potential of second preference data, a number of schools continue to use having

been selected as first preference as a criterion for selection, and we expect a number of parents to

continue to record only a first preference. Along with these actions that may be attempts to game

the system, recorded preferences reflect a perceived realistic preference, with factors such as scores

in transfer tests causing actual first preferences not to be recorded.

15

5. Conclusion
This paper set out to understand how preference data could be used to predict future demand for

schools and understand the impact that changes to one school may have on applications to another

school. Some promise was shown in predicting future first preferences, although events outside the

scope of a model will limit its predictive power over time. However, what is required for assessing

the future viability of a school are predictions of enrolments, not merely first preferences. More data

on subsequent preferences may allow for predictions of allocations of pupils, and an expansion of

the transition matrix to meet the first objective of predicting future demand for schools.

The use of the transition matrix to reallocate pupils was promising, and its outputs are validated

both by the fact that the transition matrix can make reasonable predictions of first preference

applications to a school, and the correspondence with second preference data. This method

provides a weighted summary of the post-primary schools that share the same feeder primary

schools as the school selected. This could be further developed to account for the primary schools

attended for those actually enrolled at the school, which will not be identical to the primary schools

of those who applied for the school. Even without this development, it has been deemed worthwhile

to add this information, in the form of a table and diagram (code in Appendix section 3.1,

screenshots removed) to other information about schools made available to area planners in the EA.

There are some complex relationships between post-primary schools, even those of the same type.

A transition matrix can never account for these relationships (such as sub-types and hierarchies), but

if better second preference data becomes available, as expected, future scenario planning will be

able to move away from the simple model provided by the transition matrix, to a more factual

summary of actual preferences for specific pupils enrolled in schools of interest.

16

1 A Super Output Area (SOA) is a statistical geography, dividing Northern Ireland into 890 SOAs

2 A Small Area (SA) is a statistical geography containing at least 40 households or 100 people. They nest into
SOAs and there are 4,537 SAs in Northern Ireland

3 R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.

4 Hadley Wickham and Lionel Henry (2017). tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions. R
package version 0.7.1. https://CRAN.R-project.org/package=tidyr

5 Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2018). dplyr: A Grammar of Data
Manipulation. R package version 0.7.5. https://CRAN.R-project.org/package=dplyr

6 Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony
Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew
Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression
Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret

7 Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01

8 Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York.
ISBN 0-387-95457-0

9 EA website, https://www.eani.org.uk/parents/admissions

https://www.eani.org.uk/parents/admissions

Appendix

Table of Contents
Abstract ... 1

1. Introduction .. 2

2 Methods ... 3

2.1 Preliminary Investigation .. 3

2.2 Machine Learning Models ... 3

2.2.1 Random Forest ... 4

2.2.2 Neural Network .. 4

2.2.3 Transition Matrix .. 4

2.3 Additional Analysis .. 4

2.3.1 First and Second Preferences... 5

3 Results .. 6

3.1 Preliminary Investigation .. 6

3.2 Machine Learning Model .. 7

3.2.1 Random Forest Model ... 7

3.2.2 Neural Network .. 8

3.2.3 Transition Matrix – Primary School .. 9

3.2.4 Transition Matrix – Area-based ... 10

3.2.5 Comparison of prediction methods ... 10

3.3 Additional Analysis .. 11

3.3.1 First and Second Preferences... 11

4. Discussion .. 13

4.1 Successes and Limitations ... 13

4.2 Future Enquiries .. 13

5. Conclusion ... 15

1. Functions ... 1

1.1 Assess Models ... 1

1.1.1 Description ... 1

1.1.2 Code ... 2

1.1 CreateMatrixProb ... 3

1.2.1 Description ... 3

1.2.2 Code ... 3

1.1 CreatePredByYear ... 4

1

1.3.1 Description ... 4

1.3.2 Code ... 4

1.1 createPredictionChartDf ... 4

1.4.1 Description ... 4

1.4.2 Code ... 4

2. Scripts .. 6

2.1 MajorityPupils ... 6

2.1.1 Description ... 6

2.1.2 Code ... 6

2.2 randomForest.. 17

2.2.1 Description ... 17

2.2.2 Code ... 17

2.3 nnet ... 20

2.3.1 Description ... 20

2.3.2 Code ... 20

2.4 transitionMatrixVariants ... 25

2.4.1 Description ... 25

2.4.1 Code ... 25

2.5 tableIntersections ... 26

2.5.1 Description ... 26

2.5.2 Code ... 26

3. Shiny Applications ... 39

3.1 Education Authority Candidate ... 39

3.1.1 Description ... 39

3.1.3 Code ... 39

3.2 Alpha Version .. 53

3.2.1 Description ... 53

3.2.3 Code ... 53

1. Functions

1.1 Assess Models

1.1.1 Description
This function returns a dataframe containing the predicted number of first preference applications

for each school in the dataset, along with the actual number of first preference applications. It takes

as inputs the model for making predictions for individual pupils. It defaults to return actual and

predicted applications with the training set, but can also be set to use a test set.

2

1.1.2 Code
assessModel <- function(model, test_x = NULL, test_y = NULL, data = "train"){

 probs <- extractProb(list(model))

 if(data == "train"){

 probsDf <- probs %>%

 select(-obs, -pred, -model, -dataType, -object) %>%

 colSums() %>%

 as.data.frame()

 probsDf$school <- gsub("X.","",rownames(probsDf))

 probsDf <- rename(probsDf, applications = .)

 temp <- table(gsub("X.","",probs$obs)) %>%

 as.data.frame()

 probsDf <- probsDf %>%

 left_join(temp, by = c("school" = "Var1"))

 returnDf <- probsDf

 }

otherwise try it on test data

if(data == "test" & !is.null(test_x) & !is.null(test_y)){

 test_x <- test_pupils %>%

 select(-FPA)

 test_y <- test_pupils %>%

 select(FPA) %>%

 pull()

 test_y <- as.factor(test_y)

 probsTestDf <- predict(model, newdata = test_x, type="prob") %>%

 colSums() %>%

 as.data.frame()

 probsTestDf$school <- gsub("X.","",rownames(probsTestDf))

 probsTestDf <- rename(probsTestDf, applications = .)

 temp2 <- table(gsub("X.","",test_y)) %>%

 as.data.frame()

 probsTestDf <- probsTestDf %>%

 left_join(temp2, by = c("school" = "Var1"))

3

 probsTestDf$Freq[is.na(probsTestDf$Freq)] <- 0

 probsTestDf$correct <- as.factor(ifelse(round(probsTestDf$applications,0)==probsTestDf$Freq,1,0))

 returnDf <- probsTestDf[probsTestDf$Freq != 0 & probsTestDf$school != "NA",]

}

 if(!exists("returnDf")){

 stop("Function could not run. If you specified test, did you supply test_x and test_y?")

 }

 else{

 returnDf

 }

}

1.1 CreateMatrixProb

1.2.1 Description
This function returns the proportions of pupils of each gender going from each primary school to

each post-primary school. It accepts parameters specifying which year’s transferring cohort from the

preference file should be used, allows for a list of schools to be excluded from the matrix and also

uses a post_primary data frame to provide details of the post-primary schools along with the

proportions.

1.2.2 Code
createMatrixProb <- function(multiyear, post_primary, simClosed = 1, year = 1){

 sY1PrimarySize <- multiyear %>%

 filter(year == !!year) %>%

 filter(!fpa2 %in% simClosed) %>%

 group_by(DENI.no., Gender) %>%

 summarise(primarySizeY1 = n())

 matrixProb <- multiyear %>%

 filter(year == !!year) %>%

 filter(!fpa2 %in% !!simClosed) %>%

 group_by(DENI.no., Gender, fpa2) %>%

 summarise(Freq = n()) %>%

 left_join(sY1PrimarySize, by = c("DENI.no.","Gender")) %>%

 mutate(percentOfSchool = Freq/primarySizeY1, fpa2 = as.numeric(as.character(fpa2))) %>%

 left_join(post_primary[,c(1,6)], by = c("fpa2" = "denino"))

 matrixProb

}

4

1.1 CreatePredByYear

1.3.1 Description
This function takes the pupil file and, for a specified year, applies the proportions from a probability

matrix (as created by createMatrixProb above) to predict the number of applications to each post-

primary school.

1.3.2 Code
createPredByYear <- function(multiyear, matrixProb, post_primary, year = 1){

 p7Pred <- multiyear %>%

 filter(year == !!year) %>%

 group_by(DENI.no., Gender) %>%

 summarise(yXSize = n()) %>%

 left_join(matrixProb, by = c("DENI.no.", "Gender")) %>%

 mutate(yXPred = percentOfSchool * yXSize)

 p7Pred

}

1.1 createPredictionChartDf

1.4.1 Description
This function creates a dataframe in a tidy format, ready to plot the predicted and actual first

preference applications to each post-primary school. It takes as inputs (in this order) pupil data,

preferences data, attributes data of post-primary schools, a post-code lookup and a string specifying

whether primary school code or an area based variable should be used for the transition matrix.

1.4.2 Code
source("functions//createMatrixProb.R")

source("functions//createPredSummary.R")

createPredictionChartDf <- function(sixteen, firstPrefs, post_primary, postcodes, variable =

"denino") {

 allowedList <- c("denino","lsoa11","oa11","osward","pcon","nuts","ttwa")

 if(!variable %in% allowedList){

 stop(paste0("Please choose a variable from the following list, or leave blank to default to denino:",

allowedList))

 }

 multi <- firstPrefs %>%

 filter(pref == 1) %>%

 left_join(sixteen, by = "UPN") %>%

 left_join(postcodes[,c(5,12,22,25,27,36,37)], by = c("postcode" = "pcd")) %>%

 mutate(fpa2 = as.numeric(as.character(school)), DENI.no. = eval(parse(text =variable)), Gender =

gender, year = year.x) %>%

 select(fpa2, DENI.no., Gender, UPN, year)

 pupils16 <- sixteen %>%

 left_join(postcodes, by = c("postcode" = "pcd")) %>%

5

 mutate(denino = eval(parse(text = variable)))

 # 2017 matrix

 matrixProb <- createMatrixProb(multi, post_primary, year = 2017)

 # actual fpas for each year, name columns a2017 etc.

 actualFpas <- firstPrefs %>%

 filter(pref == 1) %>%

 group_by(year) %>%

 select(school, year) %>%

 table() %>%

 as.data.frame() %>%

 spread(year,Freq, fill = 0) %>%

 mutate(school = as.numeric(as.character(school))) %>%

 rename(a2017 = `2017`, a2018 = `2018`, a2019 = `2019`)

 # apply matrix to primary school populations, by gender, as per available pupil file

 # Aggregate individual probabilities of going to each school to estimate FPAs

 predictionSummary <- pupils16 %>%

 mutate(year = ifelse(ccyear==7,17,

 ifelse(ccyear==6,18,

 ifelse(ccyear==5,19,

 ifelse(ccyear==4,20,

 ifelse(ccyear==3,21,

 ifelse(ccyear==2,22,

 ifelse(ccyear == 1,23,-1)))))))) %>%

 filter(year != -1) %>%

 count(denino,gender,year) %>%

 as.data.frame() %>%

 inner_join(matrixProb[,c(1,2,3,6)], by = c("denino" = "DENI.no.", "gender" = "Gender")) %>%

 mutate(applications = percentOfSchool * n) %>%

 ungroup() %>%

 select(fpa2, year, applications) %>%

 rename(school = fpa2) %>%

 group_by(school,year) %>%

 summarise(Applications = sum(applications)) %>%

 as.data.frame()

 predictionChart <- predictionSummary %>%

 spread(year, Applications, fill = 0) %>%

 left_join(post_primary[,c(1:2)], by = c("school" = "denino")) %>%

 left_join(actualFpas, by = "school") %>%

 rename(p2017 = `17`, p2018 = `18`, p2019 = `19`)

}

6

2. Scripts

2.1 MajorityPupils

2.1.1 Description
The script below create a subset of the pupil data, containing only similar pupils, who are further

divided into 10 categories by gender, and preference for type of school (grammar/secondary and

religious affiliation). Each of these ten datasets are then analysed, by Small Area and Super Output

Area, to see how many different schools of the same type are chosen as first preferences. This is

visualised both as a map and as a chart.

2.1.2 Code
library(tidyverse)

library(leaflet)

import data ####

prefs <- read.csv("..//p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

prefs <- prefs[!duplicated(prefs[,2:3]),] # Remove duplicates of Unique Pupil Number and preference

number,

#e.g. remove cases where one pupil has recorded two first preferences

prefs$school <- as.numeric(as.character(prefs$school)) # Not treated as factor here to allow joining

schools <- read.csv("..//post_primary_school_attributes.csv")

pupils16 <- read.csv("..//2016-17 Pupils.csv", stringsAsFactors = F)

postcodes <- read.csv("..//postcodes.csv")

pupils <- pupils16 %>%

 inner_join(postcodes[,c(5,25,36,37)], by = c("postcode" = "pcd"))

soa <- geojsonio::geojson_read("..\\Super Output Areas.json",

 what = "sp")

sa <- geojsonio::geojson_read("..\\Small Areas.json",

 what = "sp")

join data together ####

take first preference data and combine with pupil attributes

firstPref <- prefs %>%

 filter(pref == 1)

pupils <- pupils %>%

 inner_join(firstPref, by = "UPN") %>%

 rename(schoolyear = year.x, year = year.y)

pupils <- pupils %>% droplevels()

7

SOA ####

male_1_grammar_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11)

male_1_secondary_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11)

male_2_grammar_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11)

male_2_secondary_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11)

female_1_grammar_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11)

female_1_secondary_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

8

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11)

female_2_grammar_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11)

female_2_secondary_majority <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11)

categories <- c("male_1_grammar_majority", "male_2_grammar_majority",

"male_1_secondary_majority", "male_2_secondary_majority",

 "female_1_grammar_majority", "female_2_grammar_majority",

"female_1_secondary_majority", "female_2_secondary_majority")

for(i in 1:length(categories)){

 print(categories[i])

 matches <- eval(parse(text = categories[i])) %>%

 ungroup() %>%

 group_by(lsoa11) %>%

 summarise(matchCategory = n())

 tbl <- eval(parse(text = categories[i])) %>%

 group_by(lsoa11, school) %>%

 summarise(count = n()) %>%

 arrange(lsoa11, school) %>%

 as.data.frame() %>%

 ungroup %>%

 group_by(lsoa11) %>%

 summarise(destinations = n()) %>%

 arrange(desc(destinations)) %>%

 left_join(matches, by = c("lsoa11"))

 df <- as.data.frame(tbl)

 maxmin <- df %>%

 group_by(matchCategory) %>%

 summarise(max = max(destinations), min = min(destinations), mean = mean(destinations)) %>%

 as.data.frame()

9

 print(ggplot(maxmin) +

 labs(x = "number of 'identical' pupils in SOA", y = "number of diffrent first preference schools",

 title = "Male pupils who selected a Non-denominational Grammar school as first

preference",

 subtitle = "Showing the number of first preference schools compared to the number of

transferring pupils in an SOA") +

 geom_line(aes(x=matchCategory, y=max),color="red") +

 geom_line(aes(x=matchCategory, y=min),color="blue") +

 geom_line(aes(x=matchCategory, y=mean),color="black") +

 theme_minimal() +

 scale_x_continuous(minor_breaks = seq(0 , 50, 2), breaks = seq(0, 50, 4)) +

 annotate("text", x = 5, y = 4, hjust = -0.2, label = "max", col = "red") +

 annotate("text", x = 5, y = 1.9, hjust = -0.2, label = "mean", col = "black") +

 annotate("text", x = 5, y = 1.1, hjust = -0.2, label = "min", col = "blue"))

}

ggplot(maxmin) +

 labs(x = "number of 'identical' pupils in SOA", y = "number of diffrent first preference schools",

 title = categories[i]) +

 geom_line(aes(x=matchCategory, y=max),color="red") +

 geom_line(aes(x=matchCategory, y=min),color="blue") +

 geom_line(aes(x=matchCategory, y=mean),color="black") +

 theme_minimal() +

 scale_x_continuous(minor_breaks = seq(0 , 50, 2), breaks = seq(0, 50, 4)) +

 annotate("text", x = 5, y = 4, hjust = -0.2, label = "max", col = "red") +

 annotate("text", x = 5, y = 1.9, hjust = -0.2, label = "mean", col = "black") +

 annotate("text", x = 5, y = 1.1, hjust = -0.2, label = "min", col = "blue")

SA ####

male_1_grammar_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, oa11)

male_1_secondary_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, oa11)

male_2_grammar_majority_sa <- pupils %>%

10

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, oa11)

male_2_secondary_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, oa11)

female_1_grammar_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, oa11)

female_1_secondary_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, oa11)

female_2_grammar_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, oa11)

female_2_secondary_majority_sa <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(oa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, oa11)

11

categories_sa <- c("male_1_grammar_majority_sa", "male_2_grammar_majority_sa",

"male_1_secondary_majority_sa", "male_2_secondary_majority_sa",

 "female_1_grammar_majority_sa", "female_2_grammar_majority_sa",

"female_1_secondary_majority_sa", "female_2_secondary_majority_sa")

for(i in 1:length(categories_sa)){

 print(categories_sa[i])

 matches <- eval(parse(text = categories_sa[i])) %>%

 ungroup() %>%

 group_by(oa11) %>%

 summarise(matchCategory = n())

 tbl <- eval(parse(text = categories_sa[i])) %>%

 group_by(oa11, school) %>%

 summarise(count = n()) %>%

 arrange(oa11, school) %>%

 as.data.frame() %>%

 ungroup %>%

 group_by(oa11) %>%

 summarise(destinations = n()) %>%

 arrange(desc(destinations)) %>%

 left_join(matches, by = c("oa11"))

 df <- as.data.frame(tbl)

 maxmin <- df %>%

 group_by(matchCategory) %>%

 summarise(max = max(destinations), min = min(destinations), mean = mean(destinations)) %>%

 as.data.frame()

 print(ggplot(maxmin) +

 labs(title = categories_sa[i]) +

 geom_line(aes(x=matchCategory, y=max),color="red") +

 geom_line(aes(x=matchCategory, y=min),color="blue") +

 geom_line(aes(x=matchCategory, y=mean),color="black"))

}

SOAs with highest number of schools chosen:

saCentres <- as.data.frame(cbind(as.character(sa$id), as.character(sa$name),

as.numeric(sa$center1), as.numeric(sa$center2)))

names(saCentres) <- c("saCode","saName","lng","lat")

dispersedSoa <- as.data.frame(c("95JJ12W1"))

names(dispersedSoa) <- "lsoa11"

dispersedPupils <- dispersedSoa %>%

12

 left_join(pupils, by = "lsoa11") %>%

 left_join(saCentres, by = c("oa11" = "saCode")) %>%

 left_join(prefs, by = "UPN") %>%

 select(lsoa11, lat,lng, school.x) %>%

 rename(pupil.lat = lat, pupil.lng = lng) %>%

 unique() %>%

 mutate(FPA = as.numeric(gsub("X.","",x=.$school.x))) %>%

 left_join(schools[,c(1,2,3)], by = c("FPA" = "denino")) %>%

 left_join(postcodes[,c(5,46,47)], by = c("school_postcode" = "pcd")) %>%

 rename(school.lat = lat, school.lng = long)

m <- leaflet(soa, options = leafletOptions(zoomSnap = 0.01)) %>%

 addProviderTiles(providers$Stamen.TonerLite) %>%

 addPolygons(stroke = TRUE, smoothFactor = 0.3, fillOpacity = 0, weight = 1)

Create a colour palette

pal <-

colorFactor(c('#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d','#666666'),

 domain = unique(pupils$pref.schoolname))

Add pupils to the map

for(i in 1:nrow(dispersedPupils)){

 m <- addPolylines(m,

lat=c(as.numeric(as.character(dispersedPupils[i,]$pupil.lat)),dispersedPupils[i,]$school.lat),

 lng = c(as.numeric(as.character(dispersedPupils[i,]$pupil.lng)),

dispersedPupils[i,]$school.lng),

 label = dispersedPupils[i,]$schoolname,

 color = pal(dispersedPupils[i,]$schoolname),

 fillOpacity = 0.1,

 weight = 2

)

}

m

Other visualisation of dispersion ####

soaList <- list()

for(i in 1:length(categories)){

 print(categories[i])

 matches <- eval(parse(text = categories[i])) %>%

 ungroup() %>%

 group_by(lsoa11) %>%

 summarise(matchCategory = n())

 tbl <- eval(parse(text = categories[i])) %>%

13

 group_by(lsoa11, school) %>%

 summarise(count = n()) %>%

 arrange(lsoa11, school) %>%

 as.data.frame() %>%

 ungroup %>%

 group_by(lsoa11) %>%

 summarise(destinations = n()) %>%

 arrange(desc(destinations)) %>%

 left_join(matches, by = c("lsoa11"))

 df <- as.data.frame(tbl)

 soaList[[i]] <- df

}

allDfs <- bind_rows(soaList)

df <- allDfs %>%

 group_by(lsoa11) %>%

 summarise(destinations = max(destinations))

ids <- as.data.frame(soa@data$id)

destinations <- ids %>%

 left_join(df, by = c("soa@data$id" = "lsoa11"))

soa$destinations <- destinations$destinations

factpal <-

colorFactor(c('#f7fbff','#deebf7','#c6dbef','#9ecae1','#6baed6','#4292c6','#2171b5','#084594'),

soa$destinations)

m <- leaflet(soa) %>%

 addProviderTiles(providers$Stamen.TonerLite) %>%

 addPolygons(stroke = TRUE, smoothFactor = 0.3, fillOpacity = 0.5, weight = 1,

 color = ~factpal(destinations))

print(m)

min destinations ####

dfMin <- allDfs %>%

 group_by(lsoa11) %>%

 summarise(destinations = min(destinations))

ids <- as.data.frame(soa@data$id)

destinationsMin <- ids %>%

 left_join(dfMin, by = c("soa@data$id" = "lsoa11"))

14

soa$destinationsMin <- destinationsMin$destinations

factpal <-

colorFactor(c('#f7fbff','#deebf7','#c6dbef','#9ecae1','#6baed6','#4292c6','#2171b5','#084594'),

soa$destinationsMin)

m <- leaflet(soa) %>%

 addProviderTiles(providers$Stamen.TonerLite) %>%

 addPolygons(stroke = TRUE, smoothFactor = 0.3, fillOpacity = 0.5, weight = 1,

 color = ~factpal(destinationsMin))

print(m)

SOA plus primary school ####

male_1_grammar_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11, denino)

male_1_secondary_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11, denino)

male_2_grammar_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11, denino)

male_2_secondary_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 0) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11, denino)

female_1_grammar_majority_ps <- pupils %>%

15

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11, denino)

female_1_secondary_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 1, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11, denino)

female_2_grammar_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Grammar") %>%

 select(school, lsoa11, denino)

female_2_secondary_majority_ps <- pupils %>%

 filter(dayboard == 0, specialu == 0 , care == 0, freemeal == 0, stage == 0, newcomer == 0, imu == 0,

relig == 2, gender == 1) %>%

 arrange(lsoa11) %>%

 left_join(schools[,c(1,2,3,6,7)], by = c("school" = "denino")) %>%

 filter(Gram_Sec_label == "Secondary") %>%

 select(school, lsoa11, denino)

categories <- c("male_1_grammar_majority_ps", "male_2_grammar_majority_ps",

"male_1_secondary_majority_ps", "male_2_secondary_majority_ps",

 "female_1_grammar_majority_ps", "female_2_grammar_majority_ps",

"female_1_secondary_majority_ps", "female_2_secondary_majority_ps")

soaDeninoList <- list()

for(i in 1:length(categories)){

 print(categories[i])

 matches <- eval(parse(text = categories[i])) %>%

 ungroup() %>%

 group_by(lsoa11, denino) %>%

 summarise(matchCategory = n()) %>%

 group_by(lsoa11) %>%

 summarise(matchCategory = max(matchCategory))

16

 tbl <- eval(parse(text = categories[i])) %>%

 group_by(lsoa11, school, denino) %>%

 summarise(count = n()) %>%

 arrange(lsoa11, school) %>%

 as.data.frame() %>%

 ungroup %>%

 group_by(lsoa11, denino) %>%

 summarise(destinations = n()) %>%

 arrange(desc(destinations)) %>%

 left_join(matches, by = c("lsoa11"))

 df <- as.data.frame(tbl)

 maxmin <- df %>%

 group_by(matchCategory) %>%

 summarise(max = max(destinations), min = min(destinations), mean = mean(destinations)) %>%

 as.data.frame()

 print(ggplot(maxmin) +

 labs(x = "number of 'identical' pupils in SOA", y = "number of different first preference

schools",

 title = "Male pupils who selected a Non-denominational Grammar school as first

preference",

 subtitle = "Showing the number of first preference schools compared to the number of

transferring pupils in an SOA") +

 geom_line(aes(x=matchCategory, y=max),color="red") +

 geom_line(aes(x=matchCategory, y=min),color="blue") +

 geom_line(aes(x=matchCategory, y=mean),color="black") +

 theme_minimal() +

 scale_x_continuous(minor_breaks = seq(0 , 50, 2), breaks = seq(0, 50, 4)) +

 annotate("text", x = 5, y = 4, hjust = -0.2, label = "max", col = "red") +

 annotate("text", x = 5, y = 1.9, hjust = -0.2, label = "mean", col = "black") +

 annotate("text", x = 5, y = 1.1, hjust = -0.2, label = "min", col = "blue"))

 df <- as.data.frame(tbl)

 soaDeninoList[[i]] <- df

}

allDfs <- bind_rows(soaDeninoList)

df <- allDfs %>%

 group_by(lsoa11) %>%

 summarise(destinations = max(destinations))

ids <- as.data.frame(soa@data$id)

destinations <- ids %>%

 left_join(df, by = c("soa@data$id" = "lsoa11"))

soa$destinations <- destinations$destinations

17

factpal <-

colorFactor(c('#f7fbff','#deebf7','#c6dbef','#9ecae1','#6baed6','#4292c6','#2171b5','#084594'),

soa$destinations)

m <- leaflet(soa) %>%

 addProviderTiles(providers$Stamen.TonerLite) %>%

 addPolygons(stroke = TRUE, smoothFactor = 0.3, fillOpacity = 0.5, weight = 1,

 color = ~factpal(destinations)) %>%

 addLegend(position = 'topleft',

 colors = ~factpal(c(1,2,3,4,5,6)),

 labels = ~c(1,2,3,4,5,6))

print(m)

2.2 randomForest

2.2.1 Description
This script prepares data for and creates a random forest model. It then uses functions described

above to measure the accuracy of the predictive model.

2.2.2 Code
library(tidyverse)

library(caret)

library(plotly)

setwd("schools//Report")

Import data ####

prefs <- read.csv("..//p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

prefs <- prefs[!duplicated(prefs[,2:3]),] # Remove duplicates of Unique Pupil Number and preference

number,

#e.g. remove cases where one pupil has recorded two first preferences

prefs$school <- as.numeric(as.character(prefs$school)) # Not treated as factor here to allow joining

schools <- read.csv("..//post_primary_school_attributes.csv")

pupils16 <- read.csv("..//2016-17 Pupils.csv", stringsAsFactors = F)

postcodes <- read.csv("..//postcodes.csv")

pupils <- pupils16 %>%

 inner_join(postcodes[,c(5,25,36,37)], by = c("postcode" = "pcd"))

Prepare data for modelling ####

take first preference data and combine with pupil attributes

18

firstPref <- prefs %>%

 filter(pref == 1) %>%

 rename(FPA = school) %>%

 mutate(FPA = paste("X",FPA,sep = "."))

pupils <- pupils %>%

 inner_join(firstPref, by = "UPN") %>%

 rename(schoolyear = year.x, year = year.y)

pupils_orig <- pupils %>% droplevels()

select variables

pupils <- pupils_orig[,c(4,6,7,8,10,11,12,13,14,16,18,19,28,29,30,31,33)]

pupils$denino <- as.factor(pupils$denino)

pupils$relig <- as.factor(pupils$relig)

create training and test sets

train_pupils <- pupils[pupils$year == 2017,]

test_pupils <- pupils[pupils$year == 2019,]

separate response variable

pupils_x <- train_pupils %>%

 select(-FPA)

test_x <- test_pupils %>%

 select(-FPA)

pupils_y <- train_pupils %>%

 select(FPA) %>%

 pull()

test_y <- test_pupils %>%

 select(FPA) %>%

 pull()

pupils_y <- as.factor(pupils_y)

myFolds <- createFolds(pupils_y, k=10)

Create trainControl

ctrl <- trainControl(

 method = "cv",

 number = 10,

 index = myFolds,

 summaryFunction = multiClassSummary,

 classProbs = TRUE,

19

 verboseIter = FALSE,

 savePredictions = TRUE

)

Train a model

model_ranger <- train(

 x = pupils_x,

 y = pupils_y,

 method = "ranger",

 trControl = ctrl,

 importance = "impurity",

 preProcess = c("zv", "center", "scale"),

 tuneGrid = expand.grid(

 .mtry = c(7,8,9),

 .splitrule = "gini",

 .min.node.size = 5

)

)

saveRDS(model_ranger, "models//ranger.RDS")

Review model on training and test data

end ####

Review models on training and test data

source("functions//assessModel.R")

model_ranger <- readRDS("models//ranger.RDS")

trainOutcome <- assessModel(model_ranger, data="train")

testOutcome <- assessModel(model_ranger, test_x, test_y, data="test")

cor(trainOutcome$Freq,trainOutcome$applications)^2

cor(testOutcome$Freq,testOutcome$applications)^2

t <- ggplot(testOutcome,aes(x=Freq,y=applications, text=school, col=correct)) +

 geom_point(size=3) +

 labs(title = "2017 model tested on 2018 data: ranger", x= "Actual FPAs", y = "Predicted FPAs") +

 theme_minimal()

ggplotly(t)

tree <- treeInfo(model_ranger$finalModel, tree = 5)

plot(tree$splitval)

20

2.3 nnet

2.3.1 Description
This script prepares data for and creates a neural network model. It then uses functions described

above to measure the accuracy of the predictive model.

2.3.2 Code
library(tidyverse)

library(caret)

setwd("Report")

Import data ####

prefs <- read.csv("..//p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

prefs <- prefs[!duplicated(prefs[,2:3]),] # Remove duplicates of Unique Pupil Number and preference

number,

 #e.g. remove cases where one pupil has recorded two first preferences

prefs$school <- as.numeric(as.character(prefs$school)) # Not treated as factor here to allow joining

schools <- read.csv("..//post_primary_school_attributes.csv")

pupils16 <- read.csv("..//2016-17 Pupils.csv", stringsAsFactors = F)

postcodes <- read.csv("..//postcodes.csv")

pupils <- pupils16 %>%

 inner_join(postcodes[,c(5,25,36,37)], by = c("postcode" = "pcd"))

Prepare data for modelling ####

take first preference data and combine with pupil attributes

firstPref <- prefs %>%

 filter(pref == 1) %>%

 rename(FPA = school) %>%

 mutate(FPA = paste("X",FPA,sep = "."))

pupils <- pupils %>%

 inner_join(firstPref, by = "UPN") %>%

 rename(schoolyear = year.x, year = year.y)

pupils_orig <- pupils %>% droplevels()

select variables

pupils <- pupils_orig[,c(4,6,7,8,10,11,12,13,14,16,18,19,28,29,30,31,33)]

pupils$denino <- as.factor(pupils$denino)

pupils$relig <- as.factor(pupils$relig)

21

create training and test sets

train_pupils <- pupils[pupils$year == 2017,]

test_pupils <- pupils[pupils$year == 2019,]

separate response variable

pupils_x <- train_pupils %>%

 select(-FPA)

test_x <- test_pupils %>%

 select(-FPA)

pupils_y <- train_pupils %>%

 select(FPA) %>%

 pull()

test_y <- test_pupils %>%

 select(FPA) %>%

 pull()

pupils_y <- as.factor(pupils_y)

Modelling ####

set.seed(1)

myFolds <- createFolds(pupils_y, k=5)

Create trainControl

ctrl <- trainControl(

 method = "cv",

 number = 5,

 index = myFolds,

 summaryFunction = multiClassSummary,

 classProbs = TRUE,

 verboseIter = FALSE,

 savePredictions = TRUE

)

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 100

22

)

saveRDS(model_nnet, "models//nnet-cv100Iter.RDS")

Adjust train control

ctrl <- trainControl(

 method = "none",

 summaryFunction = multiClassSummary,

 classProbs = TRUE,

 verboseIter = FALSE,

 savePredictions = TRUE

)

run the other models

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 200

)

saveRDS(model_nnet, "models//nnet-noCv200Iter.RDS")

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 1000

)

saveRDS(model_nnet, "models//nnet-noCv1000Iter.RDS")

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 5000

23

)

saveRDS(model_nnet, "models//nnet-noCv5000Iter.RDS")

end ####

Remove potentially redundant variables ####

select variables

pupils <- pupils_orig[,c(4,6,7,8,10,11,12,13,14,16,18,19,28,31,33)]

pupils$denino <- as.factor(pupils$denino)

pupils$relig <- as.factor(pupils$relig)

create training and test sets

train_pupils <- pupils[pupils$year == 2017,]

test_pupils <- pupils[pupils$year == 2019,]

separate response variable

pupils_x <- train_pupils %>%

 select(-FPA)

test_x <- test_pupils %>%

 select(-FPA)

pupils_y <- train_pupils %>%

 select(FPA) %>%

 pull()

test_y <- test_pupils %>%

 select(FPA) %>%

 pull()

pupils_y <- as.factor(pupils_y)

Modelling ####

create train control

ctrl <- trainControl(

 method = "none",

 summaryFunction = multiClassSummary,

 classProbs = TRUE,

 verboseIter = FALSE,

 savePredictions = TRUE

)

run the models

set.seed(1)

model_nnet <- train(

24

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 200

)

saveRDS(model_nnet, "models//nnet2-noCv200Iter.RDS")

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 1000

)

saveRDS(model_nnet, "models//nnet2-noCv1000Iter.RDS")

set.seed(1)

model_nnet <- train(

 x = pupils_x,

 y = pupils_y,

 method = "nnet",

 trControl = ctrl,

 preProcess = c("zv", "center", "scale"),

 MaxNWts = 10000,

 maxit = 5000

)

saveRDS(model_nnet, "models//nnet2-noCv5000Iter.RDS")

end ####

Review models on training and test data

source("functions//assessModel.R")

model_nnet <- readRDS("models//nnet-noCv1000Iter.RDS")

trainOutcome <- assessModel(model_nnet, data="train")

testOutcome <- assessModel(model_nnet, test_x, test_y, data="test")

cor(trainOutcome$Freq,trainOutcome$applications)^2

cor(testOutcome$Freq,testOutcome$applications)^2

t <- ggplot(testOutcome,aes(x=Freq,y=applications, text=school, col=correct)) +

25

 geom_point(size=3) +

 labs(title = "2017 model tested on 2018 data: nnet with 1000 iterations", x= "Actual FPAs", y =

"Predicted FPAs") +

 theme_minimal()

ggplotly(t)

train.predictions <- predict(model_nnet, pupils_x, type="raw")

confusionMatrix(train.predictions, pupils_y)

2.4 transitionMatrixVariants

2.4.1 Description
This script looks at the performance of the transition matrix for 2017 when applied to 2018 and

2019. It produces charts and R2 values and can be adapted to use primary school or any of the

location variables available in function createPredictionChartDf.

2.4.1 Code
library(tidyverse)

library(plotly)

Read in Data (2017-19) ####

sixteen <- read.csv("..//2016-17 pupils.csv")

firstPrefs <- read.csv("..//p7Preferences 2017-19.csv")

post_primary <- read.csv("..//post_primary_school_attributes.csv")

postcodes <- read.csv("..//postcodes.csv")

access functions ####

source("functions//createPredictionChartDf.R")

predictionChartDf <- createPredictionChartDf(sixteen, firstPrefs, post_primary, postcodes, "lsoa11")

2017-19 based on 2017 matrix for SOA ####

Get valid first preferences, replace DENI.no. with SOA (name stays the same to avoid changing any

other code)

Removing unrecognised schools and those whose intake was 0 in 2018

predictions18 <- predictionChartDf %>%

 filter(!is.na(school), !is.na(a2018), a2018 != 0)

Removing unrecognised schools and those whose intake was 0 in 2018

predictions19 <- predictionChartDf %>%

 filter(!is.na(school), !is.na(a2019), a2019 != 0)

g <- ggplot(predictions18) +

 geom_point(aes(x=a2018, y = p2018, text = schoolname), color="purple", size = 3) +

 geom_point(aes(x=a2019, y = p2019, text = schoolname), color="darkgreen", size = 3) +

26

 geom_abline(slope = 1, color = "blue") +

 labs(title="2017 matrix applied to 2018 and 2019", x = "Actual FPA", y = "Predicted FPAs") +

 annotate("text", x=360, y=435, label = "2018", col = "purple") +

 annotate("text", x=300, y=290, label = "2019", col = "darkgreen") +

 theme_minimal()

#ggplotly(g)

Check r^2 values, equation of line and MAE

cor(predictions18$p2018, predictions18$a2018)^2

cor(predictions19$p2019, predictions19$a2019)^2

fit <- lm(p2018 ~ a2018, data=predictions18)

summary(fit)

MAE

mean(abs(predictions18$p2018 - predictions18$a2018))

mean(abs(predictions19$p2019 - predictions19$a2019))

For comparison, see how just guessing 2017's FPAs would repeat

cor(predictions18$a2017, predictions18$a2018)^2

cor(predictions19$a2017, predictions19$a2019)^2

2.5 tableIntersections

2.5.1 Description
This script runs through all three scenario planning functions for all of the post-primary schools in

the dataset. It then compares the intersection between the lists created by each method, taking the

top six other post-primary schools identified, where at least 4 schools have been identified by each

method.

2.5.2 Code
library(tidyverse)

library(plotly)

post_primary <- read.csv("..//post_primary_school_attributes.csv", stringsAsFactors = F)

post_primary$schoolname <- as.factor(post_primary$schoolname)

pupils16 <- read.csv("..//2016-17 Pupils.csv", stringsAsFactors = F)

deal with the Strandtown curiosity

pupils16[pupils16$denino %in% c(1016242,1010304,1010012),]$denino <- 1010252

Import prepared data

2017

matrixProb17 <- read.csv("..//schoolClosures//matrixProb2017.csv")

p7Pred17 <- read.csv("..//schoolClosures//p7Pred2017.csv")

soaMatrixProb17 <- read.csv("..//schoolClosures//soaMatrixProb2017.csv")

27

soaP7Pred17 <- read.csv("..//schoolClosures//soaP7Pred2017.csv")

##2018

matrixProb18 <- read.csv("..//schoolClosures//matrixProb2018.csv")

p7Pred18 <- read.csv("..//schoolClosures//p7Pred2018.csv")

soaMatrixProb18 <- read.csv("..//schoolClosures//soaMatrixProb2018.csv")

soaP7Pred18 <- read.csv("..//schoolClosures//soaP7Pred2018.csv")

2019

matrixProb19 <- read.csv("..//schoolClosures//matrixProb2019.csv")

p7Pred19 <- read.csv("..//schoolClosures//p7Pred2019.csv")

soaMatrixProb19 <- read.csv("..//schoolClosures//soaMatrixProb2019.csv")

soaP7Pred19 <- read.csv("..//schoolClosures//soaP7Pred2019.csv")

#prefs <- read.csv("..\\AllP7Preferences.csv", header = FALSE)

#prefs <- rename(prefs,school = V1, pref = V2, UPN = V3, year = V4)

prefs <- read.csv("..\\p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

stated2Prefs <- prefs %>%

 filter(pref %in% c(1,2)) %>%

 select(-year) %>%

 group_by(UPN) %>%

 summarise(fpa = school[which.min(pref)],secondPref = n() - 1) %>%

 ungroup() %>%

 select(fpa, secondPref) %>%

 mutate(fpa = as.numeric(as.character(fpa))) %>%

 group_by(fpa) %>%

 summarise(stated1 = n(), stated2 = sum(secondPref)) %>%

 as.data.frame()

schoolList <- matrixProb19 %>%

 inner_join(post_primary[,1:2],by = c("fpa2" = "denino")) %>%

 select(fpa2,schoolname) %>%

 unique()

tableIntersections <- function(simClosed, n){

 # transition matrix

 size <- p7Pred19 %>%

 filter(fpa2 %in% simClosed) %>%

 select(yXPred) %>%

 sum(na.rm=T)

 #print(paste("size:",size))

28

 #### Subjunctive: remove pupils who went to removed school from class size, to uprate everyone

else ####

 # Make sure no pupils are allocated to removed schools

 adjustedProbMatrix <- matrixProb19 %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed),0,percentOfSchool))

 reallocationList <- list()

 # For each of the removed schools, get the list of feeders and the number coming from each

feeder,

 # and the school type (Grammar/Secondary)

 for(i in 1:length(simClosed)){

 feeders <- matrixProb19 %>%

 filter(fpa2 == simClosed[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- p7Pred19 %>%

 filter(fpa2 == simClosed[i]) %>%

 select(DENI.no., Gender, yXPred)

 gramOrSec <- post_primary %>%

 filter(denino == simClosed[i]) %>%

 select(Gram_Sec_label) %>%

 pull()

 # Work out how much of the school's allocation went to a particular type of school

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, Gram_Sec_label == gramOrSec) %>%

 group_by(DENI.no., Gender) %>%

 summarise(percentAllocated = sum(percentOfSchool)) %>%

 filter(percentAllocated != 0) # remove cases where only one school of a particular type chosen

from the PS

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based on

how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(Gram_Sec_label == gramOrSec) %>%

 inner_join(percentAllocatedPerPrimary, by = c("DENI.no.", "Gender")) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.", "Gender")) %>%

 mutate(revisedPercent = percentOfSchool / percentAllocated) %>%

 mutate(reallocation = yXPred * revisedPercent) %>%

29

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 arrange(desc(reallocationSum))

 reallocationList[[i]] <- reallocation

 }

 # combine reallocation lists for each school in the list and display results

 reallocations <- bind_rows(reallocationList)

 reallocationSummary <- reallocations %>%

 group_by(fpa2) %>%

 summarise(displacedFpas = round(sum(reallocationSum),1)) %>%

 left_join(post_primary[,c(1,2)], by = c("fpa2" = "denino")) %>%

 arrange(desc(displacedFpas)) %>%

 as.data.frame()

 reallocationSummary$displacedFpas <- round(reallocationSummary$displacedFpas *

(size/sum(reallocationSummary$displacedFpas, na.rm=T)),1)

topNTransitionMatrix <- reallocationSummary %>%

 head(n)

 count <- stated2Prefs %>%

 filter(fpa %in% simClosed) %>%

 select(stated2)

2nd pref list

 pref2List <- list()

 for(i in 1:length(simClosed)){

 upns <- prefs[prefs$school == simClosed[i] & prefs$pref == 1 & nchar(as.character(prefs$UPN)) >

5,3]

 #upns <- prefs[prefs$school %in% c(1420028) & prefs$pref == 1,3]

 secondPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 2) %>%

 select(school) %>%

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq))

 #print(secondPrefs$Freq)

30

 pref2List[[i]] <- secondPrefs

 }

 all2Prefs <- bind_rows(pref2List)

 topNSecondPrefs <- all2Prefs %>%

 arrange(desc(Freq)) %>%

 head(n)

 # 1st PrefList

 pref1List <- list()

 for(i in 1:length(simClosed)){

 upns <- prefs[prefs$school %in% simClosed[i] & prefs$pref == 2 & nchar(as.character(prefs$UPN))

> 5,3]

 #upns <- prefs[prefs$school %in% c(2420054) & prefs$pref == 2,3]

 firstPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 1) %>%

 inner_join(pupils16[,c(2,11)], by = "UPN") %>%

 select(school) %>%

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq)) %>%

 left_join(stated2Prefs, by = c("fpa" = "fpa")) %>%

 filter(!is.na(fpa)) %>%

 arrange(desc(Freq))

 pref1List[[i]] <- firstPrefs

 }

 topNFirstPrefs <- bind_rows(pref1List) %>%

 group_by(fpa, schoolname, stated2) %>%

 summarise(Freq = sum(Freq)) %>%

 as.data.frame() %>%

 select(fpa, Freq, stated2, schoolname) %>%

 rename(base = stated2) %>%

 arrange(desc(Freq)) %>%

 filter(!is.na(fpa)) %>%

 head(n)

31

 c2 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNSecondPrefs) > 4,

 length(intersect(topNFirstPrefs$fpa,topNSecondPrefs$fpa)),NA)

 c3 <- ifelse(nrow(topNTransitionMatrix) > 4 & nrow(topNSecondPrefs) > 4,

 length(intersect(topNTransitionMatrix$fpa2,topNSecondPrefs$fpa)),NA)

 c4 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNTransitionMatrix) > 4,

 length(intersect(topNTransitionMatrix$fpa2,topNFirstPrefs$fpa)),NA)

 c5 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNTransitionMatrix) > 4 & nrow(topNSecondPrefs)

>4,

length(intersect(topNFirstPrefs$fpa,intersect(topNSecondPrefs$fpa,topNTransitionMatrix$fpa2))),

NA)

 row <- c(simClosed, c2, c3, c4, c5)

 cat(".")

 row

print(length(intersect(topNFirstPref$fpa,topNSecondPrefs$fpa)))

print(paste0("For top ",n," results, first and second preferences have

",length(intersect(topNFirstPrefs$fpa,topNSecondPrefs$fpa))," in common"))

print(paste0("For top ",n," results, transition matrix and second preferences have

",length(intersect(topNTransitionMatrix$fpa2,topNSecondPrefs$fpa))," in common"))

print(paste0("For top ",n," results, transition matrix and first preferences have

",length(intersect(topNTransitionMatrix$fpa2,topNFirstPrefs$fpa))," in common"))

}

in_common <- list()

for(j in 1:length(schoolList$fpa2)){

 row <- tableIntersections(schoolList[j,]$fpa2,6)

 names(row) <- c("fpa","first.and.second.prefs", "transition.and.second", "transition.and.first",

"all.three")

 in_common[[j]] <- row %>% as.data.frame() %>% t()

}

commonSummary <- do.call(rbind.data.frame, in_common)

hist(commonSummary$transition.and.second)

hist(commonSummary$transition.and.first)

hist(commonSummary$first.and.second.prefs)

hist(commonSummary$all.three)

mean(commonSummary$transition.and.second, na.rm=T)

mean(commonSummary$transition.and.first, na.rm=T)

mean(commonSummary$first.and.second.prefs, na.rm=T)

mean(commonSummary$all.three, na.rm=T)

median(commonSummary$transition.and.second, na.rm=T)

32

median(commonSummary$transition.and.first, na.rm=T)

median(commonSummary$first.and.second.prefs, na.rm=T)

median(commonSummary$all.three, na.rm=T)

#commonSummary[commonSummary$first.and.second.prefs == 6,]

commonSummary <- arrange(commonSummary,desc(transition.and.second))

commonSummary$t2rank <- NA

commonSummary$t2rank <- 1:nrow(commonSummary)

max(commonSummary[commonSummary$transition.and.second > 3,]$t2rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.second),]$transition.and.second)

max(commonSummary[commonSummary$transition.and.second > 2,]$t2rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.second),]$transition.and.second)

max(commonSummary[commonSummary$transition.and.second > 1,]$t2rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.second),]$transition.and.second)

#1 - max(commonSummary[commonSummary$transition.and.second > 1,]$t2rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.second),]$transition.and.second)

transition and first

commonSummary <- arrange(commonSummary,desc(transition.and.first))

commonSummary$t1rank <- NA

commonSummary$t1rank <- 1:nrow(commonSummary)

max(commonSummary[commonSummary$transition.and.first > 3,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.first),]$transition.and.first)

max(commonSummary[commonSummary$transition.and.first > 2,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.first),]$transition.and.first)

max(commonSummary[commonSummary$transition.and.first > 1,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$transition.and.first),]$transition.and.first)

first and second

commonSummary <- arrange(commonSummary,desc(first.and.second.prefs))

commonSummary$t1rank <- NA

commonSummary$t1rank <- 1:nrow(commonSummary)

max(commonSummary[commonSummary$first.and.second.prefs > 3,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$first.and.second.prefs),]$first.and.second.prefs)

max(commonSummary[commonSummary$first.and.second.prefs > 2,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$first.and.second.prefs),]$first.and.second.prefs)

max(commonSummary[commonSummary$first.and.second.prefs > 1,]$t1rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$first.and.second.prefs),]$first.and.second.prefs)

33

all three

commonSummary <- arrange(commonSummary,desc(all.three))

commonSummary$a3rank <- NA

commonSummary$a3rank <- 1:nrow(commonSummary)

max(commonSummary[commonSummary$all.three > 3,]$a3rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$all.three),]$all.three)

max(commonSummary[commonSummary$all.three > 2,]$a3rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$all.three),]$all.three)

max(commonSummary[commonSummary$all.three > 1,]$a3rank, na.rm = T)/

length(commonSummary[!is.na(commonSummary$all.three),]$all.three)

SOA ####

tableIntersections_soa <- function(simClosed, n){

 # transition matrix

 size <- soaP7Pred19 %>%

 filter(fpa2 %in% simClosed) %>%

 select(yXPred) %>%

 sum(na.rm=T)

 #print(paste("size:",size))

 #### Subjunctive: remove pupils who went to removed school from class size, to uprate everyone

else ####

 # Make sure no pupils are allocated to removed schools

 adjustedProbMatrix <- soaMatrixProb19 %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed),0,percentOfSchool))

 reallocationList <- list()

 # For each of the removed schools, get the list of feeders and the number coming from each

feeder,

 # and the school type (Grammar/Secondary)

 for(i in 1:length(simClosed)){

 feeders <- soaMatrixProb19 %>%

 filter(fpa2 == simClosed[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- soaP7Pred19 %>%

 filter(fpa2 == simClosed[i]) %>%

34

 select(DENI.no., Gender, yXPred)

 gramOrSec <- post_primary %>%

 filter(denino == simClosed[i]) %>%

 select(Gram_Sec_label) %>%

 pull()

 # Work out how much of the school's allocation went to a particular type of school

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, Gram_Sec_label == gramOrSec) %>%

 group_by(DENI.no., Gender) %>%

 summarise(percentAllocated = sum(percentOfSchool)) %>%

 filter(percentAllocated != 0) # remove cases where only one school of a particular type chosen

from the PS

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based on

how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(Gram_Sec_label == gramOrSec) %>%

 inner_join(percentAllocatedPerPrimary, by = c("DENI.no.", "Gender")) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.", "Gender")) %>%

 mutate(revisedPercent = percentOfSchool / percentAllocated) %>%

 mutate(reallocation = yXPred * revisedPercent) %>%

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 arrange(desc(reallocationSum))

 reallocationList[[i]] <- reallocation

 }

 # combine reallocation lists for each school in the list and display results

 reallocations <- bind_rows(reallocationList)

 reallocationSummary <- reallocations %>%

 group_by(fpa2) %>%

 summarise(displacedFpas = round(sum(reallocationSum),1)) %>%

 left_join(post_primary[,c(1,2)], by = c("fpa2" = "denino")) %>%

 arrange(desc(displacedFpas)) %>%

 as.data.frame()

 reallocationSummary$displacedFpas <- round(reallocationSummary$displacedFpas *

(size/sum(reallocationSummary$displacedFpas, na.rm=T)),1)

 topNTransitionMatrix <- reallocationSummary %>%

 head(n)

35

 count <- stated2Prefs %>%

 filter(fpa %in% simClosed) %>%

 select(stated2)

 # 2nd pref list

 pref2List <- list()

 for(i in 1:length(simClosed)){

 upns <- prefs[prefs$school == simClosed[i] & prefs$pref == 1 & nchar(as.character(prefs$UPN)) >

5,3]

 #upns <- prefs[prefs$school %in% c(1420028) & prefs$pref == 1,3]

 secondPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 2) %>%

 select(school) %>%

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq))

 #print(secondPrefs$Freq)

 pref2List[[i]] <- secondPrefs

 }

 all2Prefs <- bind_rows(pref2List)

 topNSecondPrefs <- all2Prefs %>%

 arrange(desc(Freq)) %>%

 head(n)

 # 1st PrefList

 pref1List <- list()

 for(i in 1:length(simClosed)){

 upns <- prefs[prefs$school %in% simClosed[i] & prefs$pref == 2 & nchar(as.character(prefs$UPN))

> 5,3]

 #upns <- prefs[prefs$school %in% c(2420054) & prefs$pref == 2,3]

 firstPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 1) %>%

 inner_join(pupils16[,c(2,11)], by = "UPN") %>%

 select(school) %>%

36

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq)) %>%

 left_join(stated2Prefs, by = c("fpa" = "fpa")) %>%

 filter(!is.na(fpa)) %>%

 arrange(desc(Freq))

 pref1List[[i]] <- firstPrefs

 }

 topNFirstPrefs <- bind_rows(pref1List) %>%

 group_by(fpa, schoolname, stated2) %>%

 summarise(Freq = sum(Freq)) %>%

 as.data.frame() %>%

 select(fpa, Freq, stated2, schoolname) %>%

 rename(base = stated2) %>%

 arrange(desc(Freq)) %>%

 filter(!is.na(fpa)) %>%

 head(n)

 c2 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNSecondPrefs) > 4,

 length(intersect(topNFirstPrefs$fpa,topNSecondPrefs$fpa)),NA)

 c3 <- ifelse(nrow(topNTransitionMatrix) > 4 & nrow(topNSecondPrefs) > 4,

 length(intersect(topNTransitionMatrix$fpa2,topNSecondPrefs$fpa)),NA)

 c4 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNTransitionMatrix) > 4,

 length(intersect(topNTransitionMatrix$fpa2,topNFirstPrefs$fpa)),NA)

 c5 <- ifelse(nrow(topNFirstPrefs) > 4 & nrow(topNTransitionMatrix) > 4 & nrow(topNSecondPrefs)

>4,

length(intersect(topNFirstPrefs$fpa,intersect(topNSecondPrefs$fpa,topNTransitionMatrix$fpa2))),

NA)

 row <- c(simClosed, c2, c3, c4, c5)

 cat(".")

 row

 # print(length(intersect(topNFirstPref$fpa,topNSecondPrefs$fpa)))

 # print(paste0("For top ",n," results, first and second preferences have

",length(intersect(topNFirstPrefs$fpa,topNSecondPrefs$fpa))," in common"))

 # print(paste0("For top ",n," results, transition matrix and second preferences have

",length(intersect(topNTransitionMatrix$fpa2,topNSecondPrefs$fpa))," in common"))

37

 # print(paste0("For top ",n," results, transition matrix and first preferences have

",length(intersect(topNTransitionMatrix$fpa2,topNFirstPrefs$fpa))," in common"))

}

in_common_soa <- list()

for(j in 1:length(schoolList$fpa2)){

 row <- tableIntersections_soa(schoolList[j,]$fpa2,6)

 names(row) <- c("fpa","first.and.second.prefs", "transition.and.second", "transition.and.first",

"all.three")

 in_common_soa[[j]] <- row %>% as.data.frame() %>% t()

}

commonSummary_soa <- do.call(rbind.data.frame, in_common_soa)

hist(commonSummary_soa$transition.and.second)

hist(commonSummary_soa$transition.and.first)

hist(commonSummary_soa$first.and.second.prefs)

mean(commonSummary_soa$transition.and.second, na.rm=T)

mean(commonSummary_soa$transition.and.first, na.rm=T)

mean(commonSummary_soa$first.and.second.prefs, na.rm=T)

mean(commonSummary_soa$all.three, na.rm=T)

median(commonSummary_soa$transition.and.second, na.rm=T)

median(commonSummary_soa$transition.and.first, na.rm=T)

median(commonSummary_soa$first.and.second.prefs, na.rm=T)

median(commonSummary_soa$all.three, na.rm=T)

#commonSummary_soa[commonSummary_soa$first.and.second.prefs == 6,]

commonSummary_soa <- arrange(commonSummary_soa,desc(transition.and.second))

commonSummary_soa$t2rank <- NA

commonSummary_soa$t2rank <- 1:nrow(commonSummary_soa)

max(commonSummary_soa[commonSummary_soa$transition.and.second > 3,]$t2rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.second),]$transition.and

.second)

max(commonSummary_soa[commonSummary_soa$transition.and.second > 2,]$t2rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.second),]$transition.and

.second)

max(commonSummary_soa[commonSummary_soa$transition.and.second > 1,]$t2rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.second),]$transition.and

.second)

#1 - max(commonSummary_soa[commonSummary_soa$transition.and.second > 1,]$t2rank, na.rm =

T)/

38

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.second),]$transition.and

.second)

transition and first

commonSummary_soa <- arrange(commonSummary_soa,desc(transition.and.first))

commonSummary_soa$t1rank <- NA

commonSummary_soa$t1rank <- 1:nrow(commonSummary_soa)

max(commonSummary_soa[commonSummary_soa$transition.and.first > 3,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.first),]$transition.and.fir

st)

max(commonSummary_soa[commonSummary_soa$transition.and.first > 2,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.first),]$transition.and.fir

st)

max(commonSummary_soa[commonSummary_soa$transition.and.first > 1,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$transition.and.first),]$transition.and.fir

st)

first and second

commonSummary_soa <- arrange(commonSummary_soa,desc(first.and.second.prefs))

commonSummary_soa$t1rank <- NA

commonSummary_soa$t1rank <- 1:nrow(commonSummary_soa)

max(commonSummary_soa[commonSummary_soa$first.and.second.prefs > 3,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$first.and.second.prefs),]$first.and.seco

nd.prefs)

max(commonSummary_soa[commonSummary_soa$first.and.second.prefs > 2,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$first.and.second.prefs),]$first.and.seco

nd.prefs)

max(commonSummary_soa[commonSummary_soa$first.and.second.prefs > 1,]$t1rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$first.and.second.prefs),]$first.and.seco

nd.prefs)

all three

commonSummary_soa <- arrange(commonSummary_soa,desc(all.three))

commonSummary_soa$a3rank <- NA

commonSummary_soa$a3rank <- 1:nrow(commonSummary_soa)

max(commonSummary_soa[commonSummary_soa$all.three > 3,]$a3rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$all.three),]$all.three)

39

max(commonSummary_soa[commonSummary_soa$all.three > 2,]$a3rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$all.three),]$all.three)

max(commonSummary_soa[commonSummary_soa$all.three > 1,]$a3rank, na.rm = T)/

length(commonSummary_soa[!is.na(commonSummary_soa$all.three),]$all.three)

3. Shiny Applications

3.1 Education Authority Candidate

3.1.1 Description
This first application is the application handed over to SIB for further deployment to the Education

Authority. Some of the functionality described in the report has been removed, but other

functionality has been added.

3.1.3 Code

3.1.3.1 Global

library(shiny)

library(DT)

library(tidyverse)

library(plotly)

library(igraph)

library(shinydashboard)

library(leaflet)

library(geojsonio)

post_primary <- read.csv("data//post_primary_school_attributes.csv", stringsAsFactors = F)

post_primary$schoolname <- as.factor(stringr::str_to_title(post_primary$schoolname))

#post_primary$schoolname <- as.factor(post_primary$schoolname)

primary_schools <- read.csv("data//primary_schools.csv")

primary_schools$postcode <- gsub('\\s+', '', primary_schools$postcode)

primaryEnrolments <- read.csv("data//primaryEnrolments.csv")

postcodes <- read.csv("data//postcodes.csv")

enrollments <- read.csv("data//enrollments201819.csv")

enrollments$denino <- suppressWarnings(as.numeric(as.character(enrollments$denino)))

matrixProb <- read.csv("data//matrixProb2019.csv")

p7Pred <- read.csv("data//p7Pred2019.csv")

primaryMatrixProb <- read.csv("data//primaryMatrixProb2016.csv")

primaryPred <- read.csv("data//primaryPred2016.csv")

prefs <- read.csv("data//p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

sa <- geojsonio::geojson_read("data\\Small Areas.json",

 what = "sp")

40

schoolList <- matrixProb %>%

 left_join(post_primary[,1:2],by = c("fpa2" = "denino")) %>%

 select(fpa2,schoolname) %>%

 mutate(schoolname = stringr::str_to_title(schoolname)) %>%

 filter(!is.na(fpa2),!is.na(schoolname)) %>%

 unique()

yearList <- prefs %>%

 select(year) %>%

 unique() %>%

 arrange(year) %>%

 pull()

noSixthForm <- enrollments[enrollments$year13 == 0,]$denino

3.1.3.2 Server

Function to list 'acceptable schools'; that is, if a primary school of a certain type closes, which other

primary

schools are likely to be considered by the pupils who attended the clsoed school. There is no

evidence behind the

acceptable types of schools in the statements below

getAcceptableList <- function(manType){

 if(manType == "GMI"){

 acceptableTypes <- c("Controlled Integrated", "Catholic Maintained", "Controlled", "Voluntary",

"GMI")

 }

 if(manType == "Controlled Integrated"){

 acceptableTypes <- c("Controlled Integrated", "Catholic Maintained", "Controlled", "Voluntary",

"GMI")

 }

 if(manType == "Catholic Maintained"){

 acceptableTypes <- c("Controlled Integrated", "Catholic Maintained", "GMI")

 }

 if(manType == "Other Maintained"){

 acceptableTypes <- c("Catholic Maintained", "Other Maintained")

 }

 if(manType == "Controlled"){

 acceptableTypes <- c("Controlled Integrated", "Controlled", "Voluntary", "GMI")

 }

 if(manType == "Voluntary"){

 acceptableTypes <- c("Controlled Integrated", "Controlled", "Voluntary", "GMI")

 }

 acceptableTypes

}

41

shinyServer(function(input, output) {

 # Select school and exclude school should update based on Primary or Post-primary radio button

 output$selectSchool <- renderUI({

 if(input$level == "Post-primary"){

 choiceList = paste(schoolList$schoolname,schoolList$fpa2,sep=":")

 }

 else{

 choiceList = paste(primary_schools[1:813,]$schoolname, primary_schools[1:813,]$denino, sep =

":")

 }

 selectInput("schools", "Schools", multiple = TRUE,

 choices = choiceList)

 })

 output$excludeSchool <- renderUI({

 if(input$level == "Post-primary"){

 choiceList = paste(schoolList$schoolname,schoolList$fpa2,sep=":")

 }

 else{

 choiceList = paste(primary_schools[1:813,]$schoolname, primary_schools[1:813,]$denino, sep =

":")

 }

 selectInput("exSchools", "Exclude Schools", multiple = TRUE,

 choices = choiceList)

 })

 # 6th form radio buttons and text describing the map should also depend on Primary or Post-

primary radio button

 output$RadioButtons6thForm <- renderUI({

 if(input$level == "Post-primary"){

 radioButtons("sixthForm", "Include Years", c("Years 8 to 12", "Years 13 and 14", "Years 8 to 14"),

"Years 8 to 12")

 }

 })

 output$mapDescription <- renderUI({

 if(input$level == "Primary"){

 p("Small areas containing pupils enrolled in P1 at the selected schools are shown, with small

areas

 containing no children enrolled in P1 at any other primary school in red.")

 }

 })

 # Take the inputs for schools and excluded schools and create a list of deninos

 simClosed <- eventReactive(input$run,{

 simClosed <- c()

 if(length(input$schools > 0)){

42

 for(i in 1:length(input$schools)){

 simClosed <- c(simClosed,strsplit(input$schools,":")[[i]][2])

 }

 }

 simClosed

 }

)

 excluded <- eventReactive(input$run,{

 simClosed <- c()

 if(length(input$exSchools) == 0){

 simClosed <- "0"

 }

 else {

 for(i in 1:length(input$exSchools)){

 simClosed <- c(simClosed,strsplit(input$exSchools,":")[[i]][2])

 }

 }

 simClosed

 })

 #### realloction summary: this is the main piece of work, creating a data.frame that is used to

populate tables ####

 # and charts by adapting the transition matrix based on the input schools. There are Primary and

post-primary versions

 reallocationSummary <- reactive({

 req(input$run) # waits for the run scenario button

 if(input$level == "Post-primary")

 {

 ## Update the probability matrix: set probability to 0 where the school is removed from the

choice set

 adjustedProbMatrix <- matrixProb %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed(), excluded()),0,percentOfSchool))

 reallocationList <- list()

 # For each of the removed schools, get the list of feeders and the number coming from each

feeder,

 # and the school type (Grammar/Secondary)

 for(i in 1:length(simClosed())){

 feeders <- matrixProb %>%

 filter(fpa2 == simClosed()[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- p7Pred %>%

43

 filter(fpa2 == simClosed()[i]) %>%

 select(DENI.no., Gender, yXPred)

 gramOrSec <- post_primary %>%

 filter(denino == simClosed()[i]) %>%

 select(Gram_Sec_label) %>%

 pull()

 # Work out how much of the school's allocation is accounted for by the remaining schools

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, Gram_Sec_label == gramOrSec) %>%

 group_by(DENI.no., Gender) %>%

 summarise(percentAllocated = sum(percentOfSchool))

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based

on how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(Gram_Sec_label == gramOrSec) %>%

 inner_join(percentAllocatedPerPrimary, by = c("DENI.no.", "Gender")) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.", "Gender")) %>%

 mutate(revisedPercent = percentOfSchool / percentAllocated) %>%

 mutate(reallocation = yXPred * revisedPercent) %>%

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 arrange(desc(reallocationSum))

 reallocationList[[i]] <- reallocation

 }

 ## Now exclude schools with no 6th form

 # Make sure no pupils are allocated to removed schools

 adjustedProbMatrix <- matrixProb %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed(), noSixthForm),0,percentOfSchool))

 reallocationList6th <- list()

 for(i in 1:length(simClosed())){

 feeders <- matrixProb %>%

 filter(fpa2 == simClosed()[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- p7Pred %>%

 filter(fpa2 == simClosed()[i]) %>%

44

 select(DENI.no., Gender, yXPred)

 gramOrSec <- post_primary %>%

 filter(denino == simClosed()[i]) %>%

 select(Gram_Sec_label) %>%

 pull()

 # Work out how much of the school's allocation is accounted for by the remaining schools

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, Gram_Sec_label == gramOrSec) %>%

 group_by(DENI.no., Gender) %>%

 filter(!fpa2 %in% c(simClosed(),excluded())) %>%

 summarise(percentAllocated = sum(percentOfSchool)) %>%

 filter(percentAllocated != 0) # remove cases where only one school of a particular type chosen

from the PS

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based

on how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(Gram_Sec_label == gramOrSec) %>%

 inner_join(percentAllocatedPerPrimary, by = c("DENI.no.", "Gender")) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.", "Gender")) %>%

 mutate(revisedPercent = percentOfSchool / percentAllocated) %>%

 mutate(reallocation = yXPred * revisedPercent) %>%

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 arrange(desc(reallocationSum))

 reallocationList6th[[i]] <- reallocation

 }

 # combine reallocation lists for 6th formers, ready to add to main list

 reallocations6th <- bind_rows(reallocationList6th) %>%

 group_by(fpa2) %>%

 summarise(displacedFpas6th = sum(reallocationSum)) %>%

 as.data.frame()

 # combine reallocation lists for each schoo, and add 6th form reallocations

 reallocations <- bind_rows(reallocationList)

 reallocationSummary <- reallocations %>%

 group_by(fpa2) %>%

 summarise(displacedFpas = sum(reallocationSum)) %>%

 left_join(post_primary[,c(1,2)], by = c("fpa2" = "denino")) %>%

 left_join(reallocations6th, by = "fpa2") %>%

 arrange(desc(displacedFpas)) %>%

45

 as.data.frame()

 # calculate percentages of reallocations to each school, with and without 6th form

 reallocationSummary$percentage <- round(100 * reallocationSummary$displacedFpas /

sum(reallocationSummary$displacedFpas, na.rm=T),1)

 reallocationSummary$percentage6th <- round(100 * reallocationSummary$displacedFpas6th /

sum(reallocationSummary$displacedFpas6th, na.rm = T),1)

 # Work out the nubmer of people enrolled in each year at the school. This will be multiplies by

percentage reallocations

 # based on a single year's transfer

 yearSize <- enrollments %>%

 filter(denino %in% simClosed()) %>%

 summarise(year8 = sum(year8), year9 = sum(year9), year10 = sum(year10), year11 =

sum(year11),

 year12 = sum(year12), year13 = sum(year13), year14 = sum(year14), total.pupils =

sum(total.pupils))

 reallocationByYear <- cbind(reallocationSummary, yearSize) %>%

 mutate(year8 = round(percentage/100 * year8,1), year9 = round(percentage/100 * year9,1),

year10 = round(percentage/100 * year10,1),

 year11 = round(percentage/100 * year11, 1), year12 = round(percentage/100 * year12, 1),

 year13 = round(percentage6th/100 * year13, 1), year14 = round(percentage6th/100 *

year14, 1)) %>%

 mutate(percentageY8.12 = percentage,

 percentageY8.14 = round(100 * (year8 + year9 + year10 + year11 + year12 + year13 +

year14)/total.pupils,1), denino = fpa2,

 percentageY13.14 = round(100 * (year13 + year14) / sum(year13,year14, na.rm=T)),1)

 }

 else{

 # set probability to 0 for schools removed from choice set

 adjustedProbMatrix <- primaryMatrixProb %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed(), excluded()),0,percentOfSchool))

 reallocationList <- list()

 # For each of the removed schools, get the list of feeders and the number coming from each

feeder,

 # and the school type

 for(i in 1:length(simClosed())){

 feeders <- primaryMatrixProb %>%

 filter(fpa2 == simClosed()[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- adjustedProbMatrix %>%

46

 filter(fpa2 == simClosed()[i]) %>%

 select(DENI.no., primarySizeY1) %>%

 unique() %>%

 mutate(DENI.no. = as.factor(DENI.no.))

 # Get the type of school and have acceptable types for each type:

 manType <- unique(primaryMatrixProb[primaryMatrixProb$fpa2 ==

simClosed()[i],]$management.type)

 acceptableTypes <- getAcceptableList(manType)

 # Work out how much of the school's allocation went to a particular type of school

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, management.type %in% acceptableTypes) %>%

 filter(!fpa2 %in% c(simClosed(),excluded())) %>%

 group_by(DENI.no.) %>%

 summarise(percentAllocated = sum(percentOfSchool))

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based

on how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(management.type %in% acceptableTypes) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.")) %>%

 left_join(percentAllocatedPerPrimary, by = c("DENI.no.")) %>%

 mutate(revisedPercent = ifelse(!is.na(percentAllocated),percentOfSchool /

percentAllocated,ifelse(fpa2 %in% excluded(),0,1))) %>% # Trying to capture areas that don't send

children anywhere else

 mutate(reallocation = primarySizeY1.x * revisedPercent) %>%

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 filter(!fpa2 %in% excluded()) %>%

 arrange(desc(reallocationSum))

 reallocationList[[i]] <- reallocation

 }

 # combine reallocation lists for each school in the list and display results

 reallocations <- bind_rows(reallocationList)

 reallocationSummary <- reallocations %>%

 mutate(fpa2 = as.factor(fpa2)) %>%

 group_by(fpa2) %>%

 summarise(displacedFpas = sum(reallocationSum)) %>%

 left_join(primary_schools[,c(1,2)], by = c("fpa2" = "denino")) %>%

 arrange(desc(displacedFpas)) %>%

 as.data.frame()

47

 reallocationSummary$percentage <- round(100 * reallocationSummary$displacedFpas /

sum(reallocationSummary$displacedFpas),1)

 yearSize <- primaryEnrolments %>%

 filter(denino %in% simClosed()) %>%

 summarise(year1 = sum(year.1), year2 = sum(year.2), year3 = sum(year.3), year4 = sum(year.4),

 year5 = sum(year.5), year6 = sum(year.6), year7 = sum(year.7), total.pupils =

sum(total.enrolment))

 reallocationByYear <- cbind(reallocationSummary, yearSize) %>%

 mutate(year1 = round(percentage/100 * year1,1), year2 = round(percentage/100 * year2,1),

year3 = round(percentage/100 * year3,1),

 year4 = round(percentage/100 * year4, 1), year5 = round(percentage/100 * year5, 1),

 year6 = round(percentage/100 * year6, 1), year7 = round(percentage/100 * year7, 1),

 denino = fpa2)

 }

 #print(reallocationByYear)

 reallocationByYear

 })

 output$impactSummary <- DT::renderDataTable({

 if(input$level == "Post-primary"){

 if(input$sixthForm == "Years 8 to 12"){

 reallocationByYear <- reallocationSummary() %>%

 mutate(percentage = percentageY8.12) %>%

 select(schoolname, denino, percentage, year8, year9, year10, year11, year12)

 }

 if(input$sixthForm == "Years 13 and 14"){

 reallocationByYear <- reallocationSummary() %>%

 mutate(percentage = percentageY13.14) %>%

 select(schoolname, denino, percentage, year13, year14)

 }

 if(input$sixthForm == "Years 8 to 14"){

 reallocationByYear <- reallocationSummary() %>%

 mutate(percentage = percentageY8.14) %>%

 select(schoolname, denino, percentage, year8, year9, year10, year11, year12, year13, year14)

 }

 }

 else{

 reallocationByYear <- reallocationSummary() %>%

 select(schoolname, denino, percentage, year1, year2, year3, year4, year5, year6, year7)

 }

 impactSummary <- reallocationByYear

 #impactSummary$denino %in% simClosed()

 levels(impactSummary$schoolname)[levels(impactSummary$schoolname) ==

impactSummary[impactSummary$denino %in% simClosed(),]$schoolname] <- "Not Reallocated"

48

 DT::datatable(impactSummary)

 })

 output$network <- renderPlot({

 if(input$level == "Post-primary"){

 if(input$sixthForm == "Years 8 to 12"){

 reallocations <- reallocationSummary() %>%

 mutate(percentage = percentageY8.12)

 }

 if(input$sixthForm == "Years 13 and 14"){

 reallocations <- reallocationSummary() %>%

 mutate(percentage = percentageY13.14)

 }

 if(input$sixthForm == "Years 8 to 14"){

 reallocations <- reallocationSummary() %>%

 mutate(percentage = percentageY8.14)

 }

 reallocatedTop10 <- reallocations %>%

 arrange(desc(percentage)) %>%

 head(12)

 schoolListNames <- schoolList[!is.na(schoolList$schoolname),]

 schoolListNames <- schoolListNames %>%

 filter(fpa2 == simClosed()[1] | fpa2 %in% reallocatedTop10$fpa2) %>%

 mutate(schoolname = as.factor(schoolname))

 if(length(simClosed()) > 1){

 levels(schoolListNames$schoolname)[levels(schoolListNames$schoolname) ==

schoolListNames[schoolListNames$fpa2 == simClosed()[1],]$schoolname] <- "Listed Schools"

 print(str(schoolListNames$schoolname))

 }

 totalPupils <- enrollments %>%

 filter(denino %in% simClosed()) %>%

 summarise(pupils = sum(total.pupils))

 reallocationBySchool <- cbind(simClosed()[1],reallocatedTop10, totalPupils) %>%

 mutate(total.pupils = percentage/100 * pupils) %>%

 select(-displacedFpas)

 }

 else{

 reallocations <- reallocationSummary()

 reallocatedTop10 <- reallocations %>%

 arrange(desc(percentage)) %>%

 filter(!is.na(fpa2)) %>%

 mutate(fpa2 = ifelse(fpa2 %in% simClosed(), -1, fpa2)) %>%

 head(12)

49

 schoolListNames <- primary_schools[!is.na(primary_schools$schoolname),1:2] %>%

 mutate(fpa2 = denino) %>%

 select(fpa2, schoolname)

 schoolListNames <- schoolListNames %>%

 filter(fpa2 == simClosed()[1] | fpa2 %in% reallocatedTop10$fpa2)

 levels(schoolListNames$schoolname) <- c(levels(schoolListNames$schoolname),"Not

Reallocated")

 levels(schoolListNames$fpa2) <- c(levels(schoolListNames$fpa2),-1)

 schoolListNames <- rbind(schoolListNames,c(-1, "Not Reallocated"))

 if(length(simClosed()) > 1){

 levels(schoolListNames$schoolname)[levels(schoolListNames$schoolname) ==

schoolListNames[schoolListNames$fpa2 == simClosed()[1],]$schoolname] <- "Listed Schools"

 }

 totalPupils <- primaryEnrolments %>%

 filter(denino %in% simClosed()) %>%

 summarise(pupils = sum(total.enrolment))

 reallocationBySchool <- cbind(simClosed()[1],reallocatedTop10, totalPupils) %>%

 mutate(total.pupils = percentage/100 * pupils) %>%

 select(-displacedFpas)

 }

 net <- graph_from_data_frame(d=reallocationBySchool, vertices=schoolListNames, directed=T)

 net <- simplify(net, remove.multiple = F, remove.loops = T)

 vCols <- ifelse(schoolListNames$fpa2 == -1, "red", "orange")

 layout <- layout_in_circle(net, order = c(V(net)[(degree(net)) ==

max(degree(net))],V(net)[(degree(net)) != max(degree(net))]))

 plot(net, edge.label = edge_attr(net, "percentage"), vertex.label = V(net)$schoolname,

edge.width=abs((E(net)$percentage)/2),

 layout = layout, vertex.color = vCols)

 }, width = 750, height = 750)

 output$displacementSummary <- DT::renderDataTable({

 if(input$level == "Post-primary"){

 displaced <- enrollments %>%

 filter(denino %in% simClosed()) %>%

 select(Schoolname, denino, total.pupils, SEN5, SEN1to4, fsme, Newcomers)

 }

 else{

 displaced <- primaryEnrolments %>%

50

 filter(denino %in% simClosed()) %>%

 select(schoolname, denino, total.enrolment, SEN5, SEN1to4, fsme, Newcomer)

 }

 DT::datatable(displaced)

 })

 output$map <- renderLeaflet({

 if(input$level == "Post-primary"){

 schools <- schoolList %>%

 left_join(post_primary, by = c("fpa2" = "denino")) %>%

 left_join(postcodes[,c(5,46,47)], by = c("school_postcode" = "pcd"))

 secondarySchools <- schools %>%

 filter(Gram_Sec_label == "Secondary")

 grammarSchools <- schools %>%

 filter(Gram_Sec_label == "Grammar")

 selectedSchools <- post_primary %>%

 filter(denino %in% simClosed()) %>%

 left_join(postcodes[,c(5,46,47)], by = c("school_postcode" = "pcd"))

 m <- leaflet() %>%

 addProviderTiles(providers$Stamen.TonerLite)

 for(i in 1:nrow(selectedSchools)){

 m <- addAwesomeMarkers(m, selectedSchools[i,]$long, selectedSchools[i,]$lat)

 }

 for(i in 1:nrow(grammarSchools)){

 m <- addCircles(m,grammarSchools[i,]$long, grammarSchools[i,]$lat,

 label = grammarSchools[i,]$schoolname.x,

 stroke = T, fillOpacity = 0.5,

 color = "purple", weight = 3, radius = 100)

 }

 for(i in 1:nrow(secondarySchools)){

 m <- addRectangles(m,lng1 = secondarySchools[i,]$long - 0.0012, lat1 = secondarySchools[i,]$lat

- 0.0006,

 lng2 = secondarySchools[i,]$long + 0.0012, lat2 = secondarySchools[i,]$lat + 0.0006,

 label = secondarySchools[i,]$schoolname.x,

 stroke = T, fillOpacity = 0.5,

 color = "purple", weight = 3)

 }

 }

 else{

51

 saList <- primaryMatrixProb %>%

 filter(fpa2 %in% simClosed()) %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 singlesList <- list()

 for(i in 1:length(simClosed())){

 manType <- unique(primaryMatrixProb[primaryMatrixProb$fpa2 ==

simClosed()[i],]$management.type)

 acceptableTypes <- getAcceptableList(manType)

 shortSaList <- primaryMatrixProb %>%

 filter(fpa2 %in% simClosed()[i]) %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 singleSas <- primaryMatrixProb %>%

 filter(management.type %in% acceptableTypes, DENI.no. %in% shortSaList, !fpa2 %in%

excluded()) %>%

 group_by(DENI.no.) %>%

 summarise(destinations = n())

 print(singleSas)

 singlesList[[i]] <- singleSas

 }

 singleSas <- bind_rows(singlesList)

 otherSchools <- reallocationSummary() %>%

 left_join(primary_schools, by = c("fpa2" = "denino")) %>%

 left_join(postcodes[,c(5,46,47)], by = c("postcode" = "pcd"))

 selectedSchools <- primary_schools %>%

 filter(denino %in% simClosed()) %>%

 left_join(postcodes[,c(5,46,47)], by = c("postcode" = "pcd"))

 reach <- subset(sa,id %in% saList)

 reach$single <- ifelse(reach$id %in% singleSas[singleSas$destinations == 1,]$DENI.no., 1,0)

 singles <- sum(reach$single)

 reach$single <- as.factor(reach$single)

 factpal <- colorFactor(c("black"), reach$single)

 if(singles > 0){

 factpal <- colorFactor(c("black", "red"), reach$single)

 }

52

 m <- leaflet(reach) %>%

 addProviderTiles(providers$Stamen.TonerLite) %>%

 addPolygons(stroke = TRUE, smoothFactor = 0.3, fillOpacity = 0.5, weight = 1,

 color = ~factpal(single))

 for(i in 1:nrow(selectedSchools)){

 m <- addAwesomeMarkers(m, selectedSchools[i,]$long, selectedSchools[i,]$lat)

 }

 for(i in 1:nrow(otherSchools)){

 m <- addCircles(m,otherSchools[i,]$long, otherSchools[i,]$lat,

 label = otherSchools[i,]$schoolname.x,

 stroke = T, fillOpacity = 0.5,

 color = "purple", weight = 3)

 }

 }

 m

})

})

3.1.3.3 UI

dashboardPage(

 dashboardHeader(title = tags$a(tags$img(src="EAbrand.jpg"))),

 dashboardSidebar(width = 350,

 radioButtons("level", "School Level", c("Primary", "Post-primary"), "Post-primary"),

 htmlOutput("selectSchool"),

 #radioButtons("geo","Source (for Transition Matrix)",c("Primary School","SOA"),"Primary

School"),

 #radioButtons("matrixYear","Year (for Transition Matrix)",yearList,2019),

 htmlOutput("RadioButtons6thForm"),

 htmlOutput("excludeSchool"),

 actionButton("run", "Run scenario"),

 tags$img(src="SIBbrand.jpg")),

 dashboardBody(fluidRow(

 tabBox(title = "Transition Matrix",

 id = "transitionMatrix", width = "100%", height = "875px",

 tabPanel("Tables",

 p("Showing the reallocation of pupils from the selected school(s), based on the

proportion

 of pupils from the primary school of origin who went to each school, (accounting

 for gender and grammar/secondary choice. Figures are scaled up as pupils cannot

 be reallocated if their school did not send pupils of the same gender to another school

 of the same type"),

 dataTableOutput("impactSummary")

),

 tabPanel("Charts",

 p("Graph showing the percentage of pupils (excluding 6th form) from selected schools

who would be expected to

53

 go to each of the alternative schools if their first choice school was not available, based

on primary school

 attended. A maximum of the top 12 other schools are shown."),

 plotOutput("network")

),

 tabPanel("Displacement Summary",

 dataTableOutput("displacementSummary")

),

 tabPanel("Map",

 htmlOutput("mapDescription"),

 leafletOutput("map")

)

)

)

)

)

3.2 Alpha Version

3.2.1 Description
This application was developed before the EA Candidate application and is more aligned to the

project than the actual needs of the Education Authority.

3.2.3 Code
library(shiny)

library(DT)

library(tidyverse)

library(plotly)

library('igraph')

post_primary <- read.csv("..//post_primary_school_attributes.csv", stringsAsFactors = F)

post_primary$schoolname <- as.factor(post_primary$schoolname)

pupils16 <- read.csv("pupils16.csv", stringsAsFactors = F)

edges <- read.csv("..//edges.csv")

dirEdges <- read.csv("..//dirEdges.csv")

deal with the Strandtown curiosity

pupils16[pupils16$denino %in% c(1016242,1010304,1010012),]$denino <- 1010252

Import prepared data

2017

matrixProb17 <- read.csv("matrixProb2017.csv")

p7Pred17 <- read.csv("p7Pred2017.csv")

soaMatrixProb17 <- read.csv("soaMatrixProb2017.csv")

soaP7Pred17 <- read.csv("soaP7Pred2017.csv")

##2018

54

matrixProb18 <- read.csv("matrixProb2018.csv")

p7Pred18 <- read.csv("p7Pred2018.csv")

soaMatrixProb18 <- read.csv("soaMatrixProb2018.csv")

soaP7Pred18 <- read.csv("soaP7Pred2018.csv")

2019

matrixProb19 <- read.csv("matrixProb2019.csv")

p7Pred19 <- read.csv("p7Pred2019.csv")

soaMatrixProb19 <- read.csv("soaMatrixProb2019.csv")

soaP7Pred19 <- read.csv("soaP7Pred2019.csv")

#prefs <- read.csv("..\\AllP7Preferences.csv", header = FALSE)

#prefs <- rename(prefs,school = V1, pref = V2, UPN = V3, year = V4)

prefs <- read.csv("..\\p7Preferences 2017-19.csv")

prefs <- prefs[,1:4]

stated2Prefs <- prefs %>%

 filter(pref %in% c(1,2)) %>%

 select(-year) %>%

 group_by(UPN) %>%

 summarise(fpa = school[which.min(pref)],secondPref = n() - 1) %>%

 ungroup() %>%

 select(fpa, secondPref) %>%

 mutate(fpa = as.numeric(as.character(fpa))) %>%

 group_by(fpa) %>%

 summarise(stated1 = n(), stated2 = sum(secondPref)) %>%

 as.data.frame()

schoolList <- matrixProb19 %>%

 left_join(post_primary[,1:2],by = c("fpa2" = "denino")) %>%

 select(fpa2,schoolname) %>%

 unique()

yearList <- prefs %>%

 select(year) %>%

 unique() %>%

 arrange(year) %>%

 pull()

Define UI for application that draws a histogram

ui <- fluidPage(

 # Application title

 titlePanel("School Preferences"),

 # Sidebar with a slider input for number of bins

55

 sidebarLayout(

 sidebarPanel(

 selectInput("schools", "Schools", multiple = TRUE,

 choices = paste(schoolList$schoolname,schoolList$fpa2,sep=":"),

 selected="LAGAN COLLEGE:4260255"),

 radioButtons("geo","Source (for Transition Matrix)",c("Primary School","SOA"),"Primary School"),

 radioButtons("matrixYear","Year (for Transition Matrix)",yearList,2019)

),

 # Show a plot of the generated distribution

 mainPanel(

 tabsetPanel(

 tabPanel("Tables",

 h1("Transition Matrix"),

 p("Showing the reallocation of pupils from the selected school(s), based on the proportion

 of pupils from the primary school of origin who went to each school, (accounting

 for gender and grammar/secondary choice. Figures are scaled up as pupils cannot

 be reallocated if their school/SOA did not send pupils of the same gender to another school

 of the same type"),

 dataTableOutput("impactSummary"),

 h1("Second Preferences"),

 p("Recorded second preference data scaled to account for the number of pupils being

 reallocated"),

 htmlOutput("secondPreferenceBase"),

 dataTableOutput("secondPreferenceSummary"),

 h1("Source of second preferences"),

 p("Showing the first preferences, where a second preference is for the selected school(s).

 Numbers have been scaled to estimate second preferences from each school. The base

 column refers to the number of second preferences recorded for each school over 3 years,

 and where the base is low numbers should be treated with caution."),

 dataTableOutput("firstPreferenceSummary")

),

 tabPanel("Charts",

 # p("This chart indicates how stable the transition matrix has been over the

 # time-period available"),

 # plotlyOutput("stability"),

 p("The chart below shows estimated first preference applications for 2017-23, with dots

 representing the actual number of first preference applications"),

 plotlyOutput("forecast"),

 p("Note that the Transition Matrix (used for estimates/predictions) is created from the

 intersection of pupils in the 16-17 pupil file and first preferences recorded in 20XX.

 If pupils are missing from the 16-17 file, FPAs will be understimated. If preferences are

 missing, FPAs will be overestimated, as they were worked out as a fraction of the pupils

 who expressed a first preference multiplied by the number of pupils (whether or not they

 expressed a preference."),

 plotOutput("network")

)

)

56

)

)

)

Define server logic required to draw a histogram

server <- function(input, output) {

 #### Remove schools scenarios ####

 simClosed <- reactive({

 simClosed <- c()

 for(i in 1:length(input$schools)){

 simClosed <- c(simClosed,strsplit(input$schools,":")[[i]][2])

 }

 simClosed

 })

 p7Pred <- reactive({

 if(input$geo == "Primary School"){

 chosenP7Pred <- eval(parse(text=paste0("p7Pred",substr(input$matrixYear,3,4))))

 }

 if(input$geo == "SOA"){

 chosenP7Pred <- eval(parse(text=paste0("soaP7Pred",substr(input$matrixYear,3,4))))

 }

 chosenP7Pred

 })

 matrixProb <- reactive({

 if(input$geo == "Primary School"){

 chosenMatrixProb <- eval(parse(text=paste0("matrixProb",substr(input$matrixYear,3,4))))

 }

 if(input$geo == "SOA"){

 chosenMatrixProb <- eval(parse(text=paste0("soaMatrixProb",substr(input$matrixYear,3,4))))

 }

 chosenMatrixProb

 })

 output$impactSummary <- DT::renderDataTable({

 size <- p7Pred() %>%

 filter(fpa2 %in% simClosed()) %>%

 select(yXPred) %>%

 sum(na.rm=T)

 #print(paste("size:",size))

 #### Subjunctive: remove pupils who went to removed school from class size, to uprate everyone

else ####

57

 # Make sure no pupils are allocated to removed schools

 adjustedProbMatrix <- matrixProb() %>%

 mutate(percentOfSchool = ifelse(fpa2 %in% c(0,simClosed()),0,percentOfSchool))

 reallocationList <- list()

 # For each of the removed schools, get the list of feeders and the number coming from each

feeder,

 # and the school type (Grammar/Secondary)

 for(i in 1:length(simClosed())){

 feeders <- matrixProb() %>%

 filter(fpa2 == simClosed()[i]) %>%

 ungroup() %>%

 select(DENI.no.) %>%

 unique() %>%

 pull()

 numberPerFeeder <- p7Pred() %>%

 filter(fpa2 == simClosed()[i]) %>%

 select(DENI.no., Gender, yXPred)

 gramOrSec <- post_primary %>%

 filter(denino == simClosed()[i]) %>%

 select(Gram_Sec_label) %>%

 pull()

 # Work out how much of the school's allocation went to a particular type of school

 percentAllocatedPerPrimary <- adjustedProbMatrix %>%

 filter(DENI.no. %in% feeders, Gram_Sec_label == gramOrSec) %>%

 group_by(DENI.no., Gender) %>%

 summarise(percentAllocated = sum(percentOfSchool)) %>%

 filter(percentAllocated != 0) # remove cases where only one school of a particular type chosen

from the PS

 # Divide allocations to each school of appropriate type by the above %, so that the percentage

allocations

 # for a particular type of school add up to 100%, and use these %s to make a prediction based on

how many

 # pupils are "sent back" to each primary school to be reallocated

 reallocation <- adjustedProbMatrix %>%

 filter(Gram_Sec_label == gramOrSec) %>%

 inner_join(percentAllocatedPerPrimary, by = c("DENI.no.", "Gender")) %>%

 inner_join(numberPerFeeder, by = c("DENI.no.", "Gender")) %>%

 mutate(revisedPercent = percentOfSchool / percentAllocated) %>%

 mutate(reallocation = yXPred * revisedPercent) %>%

 group_by(fpa2) %>%

 summarise(reallocationSum = sum(reallocation)) %>%

 arrange(desc(reallocationSum))

58

 reallocationList[[i]] <- reallocation

 }

 # combine reallocation lists for each school in the list and display results

 reallocations <- bind_rows(reallocationList)

 reallocationSummary <- reallocations %>%

 group_by(fpa2) %>%

 summarise(displacedFpas = round(sum(reallocationSum),1)) %>%

 left_join(post_primary[,c(1,2)], by = c("fpa2" = "denino")) %>%

 arrange(desc(displacedFpas)) %>%

 as.data.frame()

 reallocationSummary$displacedFpas <- round(reallocationSummary$displacedFpas *

(size/sum(reallocationSummary$displacedFpas, na.rm=T)),1)

 DT::datatable(reallocationSummary)

 })

 output$secondPreferenceBase <- renderUI({

 count <- stated2Prefs %>%

 filter(fpa %in% simClosed()) %>%

 select(stated2)

 #p(strong(paste0("These estimates are based on ",count," stated second

preferences (over 3 years)")))

 col <- "black"

 if(min(count) < 20){

 col <- "red"

 }

 HTML(paste0("<p style=\"color: ",col,"\">These estimates are based on ",count," stated second

preferences (over 3 years)</p>"))

 })

 output$secondPreferenceSummary <- DT::renderDataTable({

 # Get the number of reallocations

 size <- p7Pred() %>%

 filter(fpa2 %in% simClosed()) %>%

 select(fpa2, yXPred) %>%

 group_by(fpa2) %>%

 summarise(total = sum(yXPred))

 #print(paste("size:",size))

 pref2List <- list()

 for(i in 1:length(simClosed())){

59

 upns <- prefs[prefs$school == simClosed()[i] & prefs$pref == 1 & nchar(as.character(prefs$UPN))

> 5,3]

 #upns <- prefs[prefs$school %in% c(1420028) & prefs$pref == 1,3]

 secondPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 2) %>%

 select(school) %>%

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed()) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq))

 #print(secondPrefs$Freq)

 secondPrefs$Freq <- round(secondPrefs$Freq * max(size[size$fpa2 ==

simClosed()[i],2])/sum(secondPrefs$Freq, na.rm=T),1)

 pref2List <- bind_rows(pref2List, secondPrefs)

 }

 all2Prefs <- pref2List %>%

 group_by(fpa, schoolname) %>%

 summarise(Freq = sum(Freq)) %>%

 as.data.frame() %>%

 select(fpa, Freq, schoolname) %>%

 arrange(desc(Freq)) %>%

 filter(!is.na(fpa))

 #print(sum(secondPrefs$Freq, na.rm=T))

 DT::datatable(all2Prefs)

 })

 output$firstPreferenceSummary <- DT::renderDataTable({

 # Get the number of reallocations

 size <- p7Pred() %>%

 select(fpa2, yXPred) %>%

 group_by(fpa2) %>%

 summarise(total = sum(yXPred))

 #print(paste("size:",size))

 pref1List <- list()

60

 for(i in 1:length(simClosed())){

 upns <- prefs[prefs$school %in% simClosed()[i] & prefs$pref == 2 &

nchar(as.character(prefs$UPN)) > 5,3]

 #upns <- prefs[prefs$school %in% c(2420054) & prefs$pref == 2,3]

 firstPrefs <- prefs %>%

 filter(UPN %in% upns, pref == 1) %>%

 inner_join(pupils16[,c(3,12)], by = "UPN") %>%

 select(school) %>%

 table() %>%

 as.data.frame() %>%

 filter(!. %in% simClosed()) %>%

 mutate(fpa = as.numeric(as.character(.))) %>%

 select(fpa, Freq) %>%

 filter(Freq != 0) %>%

 left_join(post_primary[,1:2], by = c("fpa" = "denino")) %>%

 arrange(desc(Freq)) %>%

 left_join(stated2Prefs, by = c("fpa" = "fpa")) %>%

 filter(!is.na(fpa)) %>%

 arrange(desc(Freq)) %>%

 left_join(size, by = c("fpa" = "fpa2"))

 ## total should be the total number of first preferences from [school] (estimated by year),

 # sum should be the number of recorded 2nd prefs where [school] is first pref, (across all years)

 # This is not intuitive (which may be another way of saying I'm not that samrt), so I'll spell

 # this out: for each school that is a source of 2nd preferences, the rescaled 2nd prefs should

 # add up to firstPrefs$total (number of FPAs for the year). Stated2 is the number of stated 2nd

 # prefs recorded in all the data we are looking at, so since we look at 3 year's of 2nd pref data

 # this is the denominator

 #print(head(firstPrefs))

 firstPrefs$Freq <- round(firstPrefs$Freq * firstPrefs$total/firstPrefs$stated2,1)

 pref1List <- bind_rows(pref1List, firstPrefs)

 #print(sum(firstPrefs$Freq, na.rm=T))

 }

 all1Prefs <- pref1List %>%

 group_by(fpa, schoolname, stated2) %>%

 summarise(Freq = sum(Freq)) %>%

 as.data.frame() %>%

 select(fpa, Freq, stated2, schoolname) %>%

 rename(base = stated2) %>%

 arrange(desc(Freq)) %>%

 filter(!is.na(fpa))

 DT::datatable(all1Prefs)

61

 })

 output$network <- renderPlot({

 # remove 0 values from edges:

 edges2 <- edges[edges$crossings > 0,]

 colnames(edges2) <- c("x","y","weight")

 schoolListNames <- schoolList[!is.na(schoolList$schoolname),]

 edges3 <- edges2[edges2$x %in% schoolListNames$fpa2 & edges2$y %in%

schoolListNames$fpa2,]

 vertices <- edges3 %>%

 filter_all(any_vars(. %in% simClosed())) %>%

 arrange(desc(weight)) %>%

 mutate(school = ifelse(x %in% simClosed(),y,x))

 remove <- vertices %>%

 anti_join(head(vertices,6))

 dirEdges2 <- dirEdges[dirEdges$directedCrossings > 0,]

 colnames(dirEdges2) <- c("x","y","weight")

 dirEdges3 <- dirEdges2[dirEdges2$x %in% schoolListNames$fpa2 & dirEdges2$y %in%

schoolListNames$fpa2,]

 # d describes the edges of the network. Its first two columns are the IDs of the source and the

target node for each edge. The following columns are edge attributes (weight, type, label, or

anything else).

 #vertices starts with a column of node IDs. Any following columns are interpreted as node

attributes.

 net <- graph_from_data_frame(d=dirEdges3, vertices=schoolListNames, directed=T)

 #net <- simplify(net, remove.multiple = F, remove.loops = T)

 node <- V(net)[name %in% simClosed()]

 dirV <- ego(net, order=1, nodes = node, mode = "all", mindist = 0)

 dirG <- induced_subgraph(net,unlist(dirV))

 removeVec <- as.character(intersect(get.data.frame(dirG, what= c("vertices")

)$name,remove$school))

 dirG <- dirG - removeVec

 plot(dirG, edge.label = edge_attr(dirG, "weight"), vertex.label = V(dirG)$schoolname,

edge.width=(E(dirG)$weight)/10,

 layout = layout_with_fr(dirG), edge.curved=seq(-0.5, 0.5, length = ecount(dirG)))

 }, width = 750, height = 750)

62

 output$forecast <- renderPlotly({

 # Actual FPAs in each year for selected schools:

 actual <- prefs %>%

 filter(pref == 1, school %in% simClosed()) %>%

 group_by(school, year) %>%

 summarise(Applications = n()) %>%

 as.data.frame() %>%

 mutate(school = as.numeric(as.character(school)))

 # pupils at each primary school, subsequent predictions and joined to actual

 if(input$geo == "Primary School"){

 forecastSummary <- pupils16 %>%

 mutate(year = ifelse(ccyear==7,17,

 ifelse(ccyear==6,18,

 ifelse(ccyear==5,19,

 ifelse(ccyear==4,20,

 ifelse(ccyear==3,21,

 ifelse(ccyear==2,22,

 ifelse(ccyear == 1,23,-1)))))))) %>%

 filter(year != -1) %>%

 count(denino,gender,year) %>%

 as.data.frame() %>%

 #inner_join(matrixProb19[,c(2,3,4,7)], by = c("denino" = "DENI.no.", "gender" = "Gender"))

%>%

 inner_join(matrixProb()[,c(2,3,4,7)], by = c("denino" = "DENI.no.", "gender" = "Gender")) %>%

 filter(fpa2 %in% simClosed()) %>%

 mutate(applications = percentOfSchool * n) %>%

 ungroup() %>%

 select(fpa2, year, applications) %>%

 rename(school = fpa2) %>%

 group_by(school,year) %>%

 summarise(Applications = sum(applications)) %>%

 as.data.frame()

 }

 if(input$geo == "SOA"){

 forecastSummary <- pupils16 %>%

 mutate(year = ifelse(ccyear==7,17,

 ifelse(ccyear==6,18,

 ifelse(ccyear==5,19,

 ifelse(ccyear==4,20,

 ifelse(ccyear==3,21,

 ifelse(ccyear==2,22,

 ifelse(ccyear == 1,23,-1)))))))) %>%

 filter(year != -1) %>%

63

 count(lsoa11,gender,year) %>%

 as.data.frame() %>%

 #inner_join(matrixProb19[,c(2,3,4,7)], by = c("denino" = "DENI.no.", "gender" = "Gender"))

%>%

 inner_join(matrixProb()[,c(2,3,4,7)], by = c("lsoa11" = "DENI.no.", "gender" = "Gender")) %>%

 filter(fpa2 %in% simClosed()) %>%

 mutate(applications = percentOfSchool * n) %>%

 ungroup() %>%

 select(fpa2, year, applications) %>%

 rename(school = fpa2) %>%

 group_by(school,year) %>%

 summarise(Applications = sum(applications)) %>%

 as.data.frame()

 }

 actual$year <- ifelse(actual$year == 2017,17,ifelse(actual$year == 2018,18,19))

 #forecastPlot <- bind_rows(forecastSummary,actual)

 forecastSummary <- forecastSummary %>%

 left_join(post_primary[,c(1:2,23)], by = c("school" = "denino")) %>%

 rename(enroll1718 = X201718)

 actual <- actual %>%

 left_join(forecastSummary[,c(1,4,5)], by = "school")

 g <- ggplot(forecastSummary, aes(x=year,y=Applications, group = school, col = fct_reorder(.f =

schoolname, .x = enroll1718, .fun = max, .desc = T))) +

 geom_line() +

 theme_minimal() +

 expand_limits(x = 17, y = 0) +

 geom_hline(data = forecastSummary, aes(yintercept = enroll1718, col=schoolname), linetype =

"dashed") +

 labs(col = "School") +

 geom_point(data = actual,aes(x=year, y= Applications))

 ggplotly(g)

 })

 ### check that reallocations add up to original allocations ###

 # restore this code later to add in helpful summary

 #### end ####

}

Run the application

64

shinyApp(ui = ui, server = server)

65

