
1

MSc Data Science Project Report

An On-Demand Satellite Earth
Observation Imagery Retrieval and

Analysis Pipeline

Joshua Stephenson

MSc Data Science Project Report, Department of Computer Science and

Information Systems, Birkbeck College, University of London 2016-2018

This report is substantially the result of my own work, expressed in my own

words, except where explicitly indicated in the text. I give my permission

for it to be submitted to the JISC Plagiarism Detection Service.

The report may be freely copied and distributed provided the source is

explicitly acknowledged.

2

Word count (excluding code and appendices):

11,652 words

Acknowledgements

I would like to thank Tom Jones and Joana Kamenova from the Satellite Applications

Catapult for their advice throughout the project and the industry contacts that they

have connected me with, my supervisor Steve Maybank for his support, and Sentinel

Hub by Sinergise for the research account privileges they granted to me for the

purposes of this project.

3

1 Contents
2 Abstract ... 6

3 Introduction .. 7

3.1 Emergence of satellite-based remote sensing .. 7

3.1.1 Earth Observation and object detection ... 7

3.2 Project deliverables and objectives .. 7

3.3 Project trailer .. 8

3.3.1 Tool initialisation ... 8

3.3.2 Stage One .. 9

3.3.3 Stage Two .. 13

3.4 Project evaluation summary ... 14

3.5 Roadmap for the remainder of the report .. 14

4 Background research and literature review ... 16

4.1 Background research .. 16

4.1.1 Open satellite data .. 16

4.1.2 Commercial satellite data and existing solutions 18

4.2 Literature review ... 21

4.2.1 Computer Vision and Convolutional Neural Networks 21

4.2.2 Improving Neural Network performance with residual learning 22

5 Project Specification.. 24

5.1 Key functional requirements ... 24

5.1.1 UI and interaction requirements... 24

5.1.2 Imagery requirements ... 24

5.2 De-scoped functionality .. 24

5.3 Key dependencies ... 24

6 System Design and Architecture ... 25

6.1 Use case description and activity diagram .. 25

6.2 System design and architecture .. 28

6.2.1 System description .. 28

6.2.2 Map rendering design ... 29

6.2.3 UI design .. 31

7 Implementation .. 32

7.1 Programming languages and libraries ... 32

7.2 Databases and servers .. 32

7.3 Map rendering and UI ... 32

7.4 Implementation details ... 32

4

7.4.1 Acquiring Sentinel-2 satellite imagery .. 32

7.4.2 Creating a satellite imagery training dataset .. 36

7.4.3 Leveraging cloud computing power to train a deep residual CNN 36

7.4.4 Utilising Google Earth Engine for land cover classification 37

7.4.5 Analysing change between timeframes .. 39

7.4.6 Retrieving high-resolution imagery from DigitalGlobe 39

7.4.7 Applying Object Detection CNN to high-resolution imagery 42

7.4.8 Building the UI ... 43

8 Testing examples ... 44

8.1 Unit testing .. 44

8.1.1 Testing the GEE CART land cover algorithm.. 45

8.1.2 Retrieval time for RGB imagery from DigitalGlobe 46

8.2 User acceptance testing .. 46

9 Evaluation and Conclusion .. 48

9.1 Critical Evaluation ... 48

9.2 Lessons learnt .. 48

9.2.1 Virtual environments .. 48

9.2.2 ‘Good enough’ and ‘nice to have’ ... 49

9.2.3 Unreliable technologies .. 49

9.2.4 Training data quality ... 49

9.3 Conclusion ... 49

10 References ... 50

11 Appendices .. 56

11.1 List of Acronyms .. 56

11.2 Glossary ... 56

11.3 De-scoped Functionality and Future Improvements .. 57

11.3.1 De-scoped functionality .. 57

11.3.2 Future improvements ... 57

11.4 User set-up manual ... 58

11.5 Implementation process for building a training data set using label-maker

(additional detail for section 7.4.2) ... 59

11.6 Additional testing and analysis ... 62

11.6.1 Imagery comparison between label-maker and Sentinel-2 62

11.6.2 Stage One Resnet50 Classification CNN .. 62

11.6.3 Second Stage SSD Object Detection CNN ... 64

11.7 Program code and algorithms ... 65

5

11.7.1 Google Earth Engine CART Algorithm script ... 65

11.7.2 Python libraries ... 67

11.7.3 Python methods and functions ... 68

6

2 Abstract

Satellite Earth Observation (EO) is the gathering of information about our planet’s

physical, chemical and biological systems through satellite-based remote sensing. This is

a rapidly growing industry that has been bolstered in recent years by technical,

economic and political developments, with continued innovation from both

governments and the private sector. As a consequence, EO imagery data is becoming

available on a much greater scale than ever before.

Initially inspired by the opportunity to use this data to detect and monitor changes in

the politically charged regions of the South China Sea, the project provides an on-

demand satellite EO imagery retrieval and analysis pipeline tool that can be applied on

an international scale.

The tool utilises data from both open-access low-resolution imagery sources and

industry leading high-resolution commercial imagery providers, adapting state-of-the-art

academic research and cutting-edge tools and techniques to analyse the imagery

retrieved and present this to the user.

Supervisor: Steve Maybank

7

3 Introduction

3.1 Emergence of satellite-based remote sensing
On 4th October 1957 the world’s first artificial satellite, Sputnik 1, was successfully

launched into low Earth orbit by the Soviet Union [1]. Despite only lasting for 22 days

this achievement inaugurated the US-Russia space race and the period of development

in this field that followed. By 1980 satellites were being launched on vehicles not wholly

state-controlled [2] and since then the industry has seen exponential growth, with

around 180 Earth Observation (EO) satellites launched in 2007-2016. An estimated 600

launches by nearly fifty countries [3] is anticipated in the decade to follow with the UK

Government launching its first radar satellite, NovaSAR, on 16th September 2018 [4].

Several factors in recent years have supported the expansion of this sector. Significant

technological developments such as affordable rocket launch technology, for example

Elon Musk’s reusable Falcon 9 [5], have made commercial projects economical.

Hardware improvements including advances in miniaturisation of sensors have led to

lighter satellites and also allowed nano-satellites to collect some of the same data as

traditional larger satellites [6]. Large-scale distributed data warehousing and mining

capabilities such as Amazon Web Services (AWS) and Hadoop have made processing and

analysing data on this scale possible. All of these developments have driven up demand

and innovation in the field at an accelerating rate.

3.1.1 Earth Observation and object detection
Earth Observation (EO) is a sub-field of satellite-based remote sensing covering a broad

range of land cover and land use applications such as urban change detection, carbon

biomass assessment, ocean management, disaster and disease response, and air quality

monitoring [7]. This usually involves quantifying some aspect of large areas of land and

does not typically depend on very high-resolution data.

In 2014 the US Government effectively loosened restrictions on the spatial resolution of

commercial satellite imagery, lowering the highest permitted resolution from 50cm per

pixel to 25cm per pixel and allowing DigitalGlobe to sell images at this quality [8] [9]. At

this resolution the types of object that can be identified from satellite imagery is vastly

increased. Innovative applications, such as measuring seal populations in Antarctica as

an indicator for coastal ecosystem health [10], or monitoring disease trends by counting

cars in hospital carparks [11] continue to be conceived and tested.

3.2 Project deliverables and objectives
There were two key aims for this project. Firstly, to gain an understanding of satellite EO

imagery analysis and the cutting-edge open source and commercial technology that is

available. Secondly, to develop a tool that is relevant to the current challenges and

opportunities and state-of-the-art research in the field.

The project delivers a proof-of-concept tool enabling a user to retrieve, view and analyse

satellite imagery data via an interactive view of a map and User Interface (UI) in a two-

stage process.

In the first stage a low-resolution satellite imagery mosaic with minimum cloud-

coverage levels is generated for two pre-specified timeframes over a pre-specified area-

of-interest (AOI). Once this is returned two types of land cover classification algorithms

8

are applied to provide the user with an indication of potential change of interest over

time.

In the second stage a high-resolution satellite image with minimum cloud-coverage

levels is returned over a smaller pre-specified AOI and a state-of-the-art object detection

algorithm is applied.

The tool can also serve as a prototyping environment for testing future developments.

Accompanying this tool, a detailed project report is provided that outlines the system

design and architecture, the implementation process, and the testing procedures

undertaken.

3.3 Project trailer
An exhibition of selected features of the project tool is provided below.

3.3.1 Tool initialisation
After following the set-up steps in section 11.4 and initiating the tool the UI and

graphical map in Figure 1 is displayed.

Figure 1 - User Interface and graphical map upon initialisation of project tool

The user can interact with the map by clicking ‘+’ and ‘-’ buttons to zoom in and out, and

by dragging the map to pan. If the user clicks on the map the latitude and longitude

9

coordinates at that point are shown. This functionality is demonstrated in an example

over Ho Chi Minh City, Vietnam in Figure 2.

Figure 2 - Zoom, pan, and mouse click functionality of project tool

3.3.2 Stage One
Once the user has identified the latitude and longitude coordinates of their AOI they can

interact with the UI to choose the parameters for requesting satellite imagery. At Stage

One the project tool will read the input from the ‘longitude’ and ‘latitude’ sliders (which

have been linked to the freetext boxes), the ‘period start date’ fields, the ‘period length’

sliders and the ‘Radius of interest’ slider. In Figure 3 these have been set to non-default

values, and when the ‘Run Stage One’ button is clicked the process of retrieving and

analysing Sentinel-2 satellite imagery will begin.

10

Figure 3 - Parameters chosen and Stage One button highlighted

Once the user has clicked the ‘Run Stage One’ button the project tool will print the user

inputs and retrieve and analyse the satellite imagery, providing progress updates at

various stages. If there is more than one image available for a given timeframe the tool

will produce a mosaic of imagery prioritising lowest cloud cover. Figure 4 gives an

example of the resultant map displaying a low cloud imagery mosaic once this process is

complete.

11

Figure 4 - Stage One low cloud imagery mosaic feature layer

In the top right corner the user can choose which feature layers to display and toggle

‘full-screen’ mode on/off, a close-up is provided in Figure 5.

Figure 5 - Close-up of feature layer panel and 'full-screen' button

One type of analysis layers is the result of a Classification and Regression Tree (CART)

algorithm. An example of this feature layer is shown in Figure 6. Pixels classified as

urban are coloured red, vegetation is coloured green, and water is coloured blue.

12

Figure 6 - CART land cover classification feature layer

The CART-estimated land cover proportions of each tile in the imagery mosaic are

compared between the two timeframes and the ‘Land cover change’ feature layer,

shown in Figure 7, highlights to the user the areas which have seen the highest amount

of change.

Figure 7 - Land cover change feature layer example

A deep residual Convolutional Neural Network (CNN) is applied to estimate whether

tiles contain ‘man made structures’ or not. The ‘CNN Estimate change’ feature layer

compares these predictions between the two timeframes and highlights the difference

to the user in a similar manner to the ‘Land cover change’ layer. When this layer is

displayed a mouse click will show the CNN estimates for each timeframe, as illustrated

in Figure 8.

13

Figure 8 - CNN Estimate change feature layer. Polygon opacity is low due to low change detected.

3.3.3 Stage Two
The user can also initiate Stage Two of the project tool from the same UI. At Stage Two

the project tool will read the input from the longitude and latitude sliders and the

‘Object Confidence’ slider. Figure 9 shows the output of the project tool once the user

has set ‘Longitude’ = 106.6641, ‘Latitude’ = 10.8171, ‘Object Confidence’ = 0.5, and

clicked the ‘Run Stage Two’ button.

Figure 9 - Stage Two High Quality image layer with object bounding boxes

At all stages in the pipeline the user can pan the map and change the zoom level. In

Figure 10 the imagery and analysis returned at Stage Two has been inspected at a higher

zoom level and with ‘full-screen’ toggled on.

14

Figure 10 - Closer zoom of Stage Two imagery and analysis layer

3.4 Project evaluation summary
This project was particularly challenging due to my unfamiliarity with the subject matter,

the cutting-edge nature of the field, and the scale of the deliverables I set out to

achieve. When starting this project I had only a limited knowledge of Computer Vision,

satellite EO, or cloud computing technologies, and so to deliver a functional and high-

quality tool a significant amount of my time was devoted to independently researching

these areas and testing the relevant state-of-the-art technologies in these fields.

Through contacts made via the Satellite Applications Catapult and successful research

applications to the European Space Agency (ESA) and AWS I was able to gain access to

the cutting-edge tools and industry-leading imagery data necessary to deliver an

otherwise cost-prohibitive project.

The project achieved its main goal which was to investigate the field of satellite EO and

demonstrate a proof-of-concept tool that accesses and analyses low-resolution open

imagery data on a larger scale and then high-resolution commercial imagery data on

smaller AOIs following this. The project could be enhanced with a better-quality set of

labelled data upon which to train the algorithms that are applied, and from an improved

UI. These and other recommendations are provided in more detail in section 11.3.

3.5 Roadmap for the remainder of the report
The subsequent sections of the report detail the relevant outputs from this project. The

contents of each are outlined below:

• Section 4: Background research and literature review
This section focusses on the context of the report. The background research section

details the imagery data available in the field of satellite EO. The literature review

section introduces several of the techniques and concepts used in the project.

• Section 5: Project Specification
This section outlines the key functional requirements, de-scoped functionality, and key

dependencies of the project tool.

15

• Section 6: System Design and Architecture
This section provides a high-level description of the architecture of the project tool and

the map rendering and UI design.

• Section 7: Implementation
This section details all aspects related to the implementation of the project tool. This

includes the technologies, tools, programming languages, and servers used.

• Section 8: Testing
This section provides details of testing additional to that in the implementation section,

including unit testing and user acceptance testing.

• Section 9: Evaluation and Conclusion
This section provides an overall evaluation of the project and includes a critical
evaluation, lessons learnt and conclusion.

16

4 Background research and literature review
This section focusses on the context of the report. The background research section

details the imagery data and existing solutions available, following this the literature

review section introduces state-of-the-art Computer Vision techniques and concepts

that are used in the project.

4.1 Background research

4.1.1 Open satellite data
The first stage of this project focuses specifically on EO using open satellite data. Two of

the most prominent open data sources for this type of imagery are the Sentinel-2 and

Landsat 8 missions, coordinated by the ESA and National Aeronautics and Space

Administration (NASA) respectively. The satellites in both missions host a range of multi-

spectrum imaging sensors.

4.1.1.1 Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

NASA’s Landsat program is the longest running enterprise for acquisition of satellite

imagery of Earth [12], beginning with the launch of Landsat 1 in 1972 and documenting

decades of global change through six successful launches since. The most recent satellite

mission, Landsat 8, was launched on February 11th 2013 with a 5-year lifespan and up to

10 years of fuel on board. The mission’s main objective is to provide data continuity of

the earlier Landsat 4, 5, and 7 missions by capturing timely and high-quality images of all

landmass and near-coastal areas on the Earth [13].

Figure 11 - Landsat 8 Satellite model. Source – NASA [14]

Landsat 8 carries two sensors: the Operational Land Imager (OLI) and the Thermal

Infrared Sensor (TIRS). These instruments capture 9 spectral and 2 thermal bands

respectively as shown in Table 1, with a swath width of 185 kilometres and revisit time

of 16 days.

17

Table 1 - Wavelengths and Bandwidths of the Landsat 8 OLI and TIRS instruments. Source – USGS [15]

Wavelength Range

(nm)
Sensor

15 08 – Panchromatic 500 – 680 OLI

01 – Coastal/Aerosol 433 – 453 OLI

02 – Blue 450 – 515 OLI

03 – Green 525 – 600 OLI

04 – Red 630 – 680 OLI

05 – NIR 845 – 885 OLI

06 – SWIR 1,560 – 1,660 OLI

07 – SWIR 2,100 – 2,300 OLI

09 – Cirrus 1,360 – 1,390 OLI

10 – LWIR 10,300 – 11,300 TIRS

11 – LWIR 11,500 – 12,500 TIRS

30

100

Spatial

Resolution

(m/pixel)

Spectral Band

Landsat 8

The data captured by Landsat 8 is downlinked and processed into high-quality data

products within 24 hours of acquisition by the Level-1 Product Generation System at the

Earth Resources Observation and Science Center. The processing uses inputs from both

the sensors and the spacecraft to remove various distortions such as view angle effects,

altitude deviations, and Earth curvature. These images are suitable for pixel-level time

series analysis [15].

4.1.1.2 Sentinel-2 Multispectral Instrument (MSI)

The Sentinel-2 mission comprises two identical polar-orbiting satellites launched on 23rd

June 2015 (Sentinel-2A) and 7th March 2017 (Sentinel-2B), both with a 7-year lifespan

and up to 12 years of fuel on board. The pair are phased at 180° to each other, each

carrying multispectral ‘high-resolution’ imaging sensors covering the 13 spectral bands

shown in Table 2 for the purpose of land monitoring. They are part of a series of next-

generation EO initiatives run by the ESA to support the operational needs of the

Copernicus programme [16] and to provide continuity for the current Landsat missions.

Figure 12 - Sentinel-2 Satellite model. Source - ESA [17]

18

During development of the Sentinel-2 Satellites the ESA and NASA collaborated to cross-

calibrate the instruments with those on Landsat 8, with the goal of allowing the scientific

community to use data from the two sensor types synergistically [18]. A further aim of

the Sentinel-2 mission was to improve upon the existing Landsat 8 Near-Infrared (NIR)

band which was found to be heavily contaminated by water vapour and not sensitive

enough to certain parameters [17]. Recent studies have shown that Sentinel-2 bands are

more accurate than those of Landsat 8 when used for land use and land cover mapping

[19] [20].

Table 2 - Wavelengths and Bandwidths of the Sentinel-2 MSI. Source – ESA [17]

Central

Wavelength

(nm)

Bandwidth

(nm)

Central

Wavelength

(nm)

Bandwidth

(nm)

02 – Blue 496.6 98 492.1 98

03 – Green 560 45 559 46

04 – Red 664.5 38 665 39

08 – NIR 835.1 145 833 133

05 – Vegetation Red Edge 703.9 19 703.8 20

06 – Vegetation Red Edge 740.2 18 739.1 18

07 – Vegetation Red Edge 782.5 28 779.7 28

8A – Narrow NIR 864.8 33 864 32

11 – SWIR 1613.7 143 1610.4 141

12 – SWIR 2202.4 242 2185.7 238

01 – Coastal aerosol 443.9 27 442.3 45

09 – Water vapour 945 26 943.2 27

10 – SWIR – Cirrus 1373.5 75 1376.9 76

Spatial

Resolution

(m/pixel)

20

60

Spectral Band

Sentinel-2A Sentinel-2B

10

The Sentinel-2 mission captures a wide swath width of 290km and initially had a revisit

time of 10 days. Following the successful launch of the second satellite the revisit time

was halved to 5 days. It should be noted that as with Landsat 8 and other satellites

carrying passive sensors, the quality and usability of imagery is highly dependent on the

cloud coverage at time of capture.

Every day the Sentinel-2 Satellites capture 2.4 Terabytes of raw data, which is

transmitted in compressed format to the ESA’s Payload Data Ground Segment during

satellite overpass. The Payload Data Ground Segment decompresses this data, applies

radiometric and geometric corrections with sub-pixel accuracy to create a ‘Level-1C’

Top-of-Atmosphere (TOA) reflectance product [21], and archives the data for online

access by users.

For certain geographical regions such as Europe a further processed ‘Level-2A’

operational product became available in March 2018. This additional processing includes

a scene classification and an atmospheric correction to create a Bottom-of-Atmosphere

corrected reflectance product. The ESA plans to gradually ramp-up the geographical

availability of this product to systematic worldwide coverage in 2018 [22].

4.1.2 Commercial satellite data and existing solutions
At 10 m/pixel the best spatial resolution available from open satellite data is not high

enough for detailed object detection. For these purposes the second stage of the tool

will need to obtain imagery from other sources. Two of the leading Commercial satellite

19

data services offering imagery at a higher resolution and also platforms for analysis are

Planet Labs and DigitalGlobe.

4.1.2.1 Planet Labs

Planet Labs is a commercial satellite data service that launched their first two satellites

in 2013. As of March 2018 they operate more than 175 Dove satellites, 13 SkySats, and 5

RapidEye satellites currently in Earth orbit [23], delivering an industry leading level of

coverage and scale with further launches planned for 2018 [24].

Their product offering includes medium, high, and open water resolution satellite

imagery monitoring in GeoTIFF format, delivered to consumers either using their GUI

platform ‘Planet Explorer’ or through their API cloud-based platform that integrates

geographic information systems (e.g. ArcGIS, QGIS, Boundless).

Planet Lab’s imagery data archive dates back to 2009 and has been successfully used to

train machine learning and Computer Vision algorithms, for example in their Kaggle

competition [25].

The highest resolution imagery that Planet Labs offer is at 0.72m/pixel, captured by the

sensors on Skysats 3 – 13 in their satellite constellation launched between June 2016

and October 2017. The sensors have a ~6.6km swath width and capture imagery in 5

spectral bands – Red, Green, Blue, NIR, and Panchromatic.

Figure 13 – SkySat 3. Source – Skybox Imaging [23]

4.1.2.2 DigitalGlobe

DigitalGlobe is a publicly listed company with a similar product offering to Planet Labs.

They own a constellation of their own high-resolution satellites [26] and claim to be the

world’s leading provider of multispectral Earth imagery content, supplying much of the

high-resolution imagery which Google Earth and Google Maps have used [27].

DigitalGlobe uses AWS Simple Cloud Storage Service (S3) ‘buckets’ to store GeoTiff

format data, accessed along with computational resources through their Geo Big Data

Platform (GBDX) RESTful APIs, and although a costly paid service they offer limited free

access in an evaluation account.

The highest resolution they offer is industry leading at 0.31m/pixel. This is captured by

sensors on their WorldView-3 and Worldview-4 Satellites, launched in August 2014 and

November 2016 respectively. The sensors on both satellites have a swath width of

~13.1km and capture the same spectral bands as Planet Labs’ SkySats.

https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Google_Maps

20

The sensors on WorldView-3 also capture 4 additional ‘visible and near-infrared’ (VNIR)

bands: coastal, yellow, red edge, and NIR2; 8 ‘short-wave infrared’ (SWIR) bands that

penetrate haze, fog, smog, dust, and smoke; and 12 ‘CAVIS’ (Clouds, Aerosols, Vapours,

Ice and Snow) bands for mapping clouds, ice and snow whilst correcting for aerosol and

water vapour [28].

Figure 14 - WorldView-3. Source – DigitalGlobe [28]

While both Planet Labs and DigitalGlobe offer platforms in which to analyse their data,

their services require significant development and coding from the user and the non-

commercial data is limited on each. Another existing solution is Google Earth Engine

[29].

4.1.2.3 Google Earth Engine

Google Earth Engine (GEE) is a geospatial data processing/analysis platform, providing

cloud-based access to many of the open satellite data sources such as Landsat, Sentinel,

MODIS, and more. The engine is also a platform for Google's computational capabilities,

extending large-scale satellite data access to those that lack the technical capacity

required to utilise traditional supercomputers or commodity cloud computing resources

[30].
To test the feasibility of this technology as a basis upon which to build the project tool I

investigated using a Python interface for GEE access, which requires a container

technology called Docker. Docker containers are useful for a variety of reasons, but

Google encourages their use when deploying a Python Development Environment to

allow others to be able to easily replicate any behaviour being experienced for

collaboration purposes. After facing multiple issues running Docker locally I instead

opted to run a Datalab Docker container on Google Cloud Platform. Despite initial

success the outcome was still not favourable with the Google developers not actively

maintaining critical Python objects such as ee.mapclient [31] which is used in the

majority of their code examples and allows users to view data as map tile projections.

This object was built on TK, a graphical UI toolkit which unfortunately behaves

differently on different machines despite the use of Docker.

Although a valuable experiment, as a result of the cutting-edge nature of both Docker

and GEE there are numerous issues still to be resolved for sufficiently reliable

functionality of this product. Given the amount of time invested without successful

imagery acquisition within a Python Development Environment I concluded that this

cloud solution is not viable as a platform for my project. Despite that, the GEE Javascript

https://developers.google.com/earth-engine/python_install-datalab-gcp.html

21

code editor and web-based IDE has proven to be a useful tool, revealing the poor South

China Sea coverage of Landsat 8 during satellite data imagery exploration as shown in

Figure 15, and also through the testing of a ‘Classifier’ package which handles various

supervised classification algorithms such as decision trees, linear regression models,

support vector machines, perceptrons, and naive Bayes models; an application of this

package is detailed in section 7.4.4.

Figure 15 - Landsat 8 imagery cover in the South China Sea. Source – GEE [29]

4.2 Literature review

4.2.1 Computer Vision and Convolutional Neural Networks
Computer Vision is a scientific discipline that studies how computers can efficiently

perceive, process, and understand visual data such as images and video. Applications

include face and object detection, self-driving vehicles, 3D reconstruction from images

and more.

Artificial Neural Networks (Figure 16) are a biologically-inspired programming paradigm,

popularly used for deep learning applications that require a computer to learn from

observational data.

Figure 16 - A regular 3-layer Artificial Neural Network [32]

22

Their application to image classification underwent a major breakthrough in 2012 when

Krizhevsky, et al. [33] applied a Convolutional Neural Network (CNN) to accomplish

state-of-the-art performance in the 2012 ImageNet Challenge, achieving a winning top-5

test error rate of 15.3%, compared to 26.2% accomplished by the second-best entry.

CNNs are inspired by Hubel and Wiesel’s [34] explanation of how mammals visually

perceive the world around them using a layered architecture of neurons in the brain.

Unlike a regular Neural Network, the layers of a CNN are arranged in 3 dimensions:

width and height which are generally proportional to the pixel dimensions of input

images, and bands which relates to the number of spectral bands. They take their name

from the convolution layers they apply that slide or convolve a filter of fixed size over

the data. This is an effective technique when the feature order/arrangement of the

CNN’s input layer is important, as you would expect for pixels in an image. In early layers

this allows the CNN to identify basic visual features such as edges or groups of colours.

In subsequent layers increasingly complex features such as circles, or eventually faces

can be detected.

Figure 17 - Structure of a Convolutional Neural Network [32]

After a convolution layer it is typical to apply a Rectified Linear Unit activation layer,

this was found to accelerate performance improvements during training of CNNs

compared to other activation layer functions [33].

Another important layer of a CNN is the pooling layer that down-samples the spatial size

of the representation to reduce the number of parameters and amount of computation

in the network. These reductions also control overfitting [32].

4.2.2 Improving Neural Network performance with residual learning
In the field of Computer Vision both current research [35] [36] and the human-level

surpassing leading results [37] of the annual ImageNet dataset competition have shown

that when training CNNs a principal factor for image classification performance is the

number of hidden layers and nodes, known as network depth. However, the more

hidden layers of nodes a neural network has, the more difficult it is to train. This is due

to the degradation problem whereby accuracy improvements diminish and then

degrade rapidly as network depth increases. This issue was tackled in Kaiming, et al. [38]

using a method called deep residual learning. Their Residual Neural Network (ResNet)

took 1st place in 5 of the largest Computer Vision competitions in 2015.

Residual learning eases the training of CNNs and enables their architectures to be

substantially deeper by building ‘residual blocks’ that employ identity mappings as

shown in Figure 18.

23

Figure 18 - A residual block [38]

24

5 Project Specification
This section outlines the key functional requirements, de-scoped functionality, and key

dependencies.

5.1 Key functional requirements

5.1.1 UI and interaction requirements

• User can view, pan, and zoom graphical map of the world and obtain

latitude/longitude coordinates of AOI

• User can request low-resolution imagery retrieval and analysis within radius of

specified latitude/longitude, captured during specific time periods

• User can view, pan, and zoom imagery and analysis layers of map

• User can request high-resolution imagery retrieval and analysis of AOI at specific

latitude/longitude

5.1.2 Imagery requirements

• Low-resolution imagery returned to user is mosaic of minimal cloud coverage

during period requested

• High-resolution imagery returned to user is that with lowest cloud coverage

available over AOI, prioritised by capture date

• Imagery is shown in true colour using Red Green and Blue spectral bands from

satellite data

• Imagery returned is layered on graphical map at correct geolocations

• Imagery returned is suitable for application of algorithms

5.2 De-scoped functionality
• UI slider functionality for first/second timeframe imagery mosaic layers

• Specific focus on developments in the South China Sea

• Fine-tuning the CNNs

Section 11.3 provides additional detail on the de-scoped functionality and also a sample

of suggested future improvements for the project tool.

5.3 Key dependencies
Table 3 - Key project dependencies and impacts

Dependency Impacts on

Availability of labelled satellite imagery
training data.

Feasibility and accuracy of algorithms.

Sufficient GPU computing capacity. Ability to train algorithms within limited
timeframe.

Active connection to satellite imagery
servers and access permissions.

Ability to retrieve data.

Low cloud satellite imagery of AOI. Effectiveness of tool and algorithms.

Sufficient CPU computing capacity. Ability to run tool and apply algorithms
locally.

Sufficiently reliable/stable software
libraries available.

Ability to build a functional tool within
limited timeframe.

25

6 System Design and Architecture
This section provides a high-level description of the architecture of the project tool and

the map rendering and UI design.

6.1 Use case description and activity diagram
The core use case is described with a use case description (Table 4) and an activity

diagram (Figure 19). The activity diagram assumes that the user provides suitable

parameters and satellite imagery is available, the tool has additional exception handling

for when this is not the case.

Table 4 - Use Case Description for Project Tool

Use Case Name: Analyse Satellite Imagery

Description: A tool which allows a user to retrieve and analyse satellite
imagery

Actor: User

Triggers: User loads and runs Jupyter Notebook file to display graphical
map and UI

Precondition: User wishes to retrieve and analyse satellite imagery in a specific
AOI and perform analysis to compare changes over time and
detect objects

Postcondition: User is able to view satellite imagery and analysis as layers
displayed in an interactive map

Main Course (M): 1. User interacts with graphical map and uses mouse click
to identify latitude and longitude of AOI

2. User interacts with UI to set parameters: Latitude
coordinate, Longitude coordinate, Radius of interest,
First period start date and length of this period, Second
period start date and length of this period.

3. User initiates low-resolution satellite imagery retrieval
and analysis by clicking ‘Run Stage One’ button.

4. The inputs are processed and sent as a Web Coverage
Service (WCS) request (7.4.1.1.1) to the Sentinel Hub
servers

5. The imagery retrieved is prioritised based on cloud
coverage and analysed.

6. The imagery and analysis are displayed on an interactive
map and navigated by the user

7. The user may proceed to use mouse clicks to identify
latitude and longitude of second AOI

8. User interacts with UI to set parameters for second
stage: Latitude coordinate and Longitude coordinate.

9. User initiates high-resolution satellite imagery retrieval
and analysis by clicking ‘Run Stage Two’ button

10. The inputs are processed and the DigitalGlobe catalogue
is searched for candidate image. Metadata is retrieved to
prioritise imagery based on cloud cover and capture date

11. For each candidate image a WCS request to the
DigitalGlobe servers is attempted in prioritised order
based on cloud cover and capture date until an image is
successfully retrieved

26

12. Analysis is performed on the image retrieved.
13. The imagery and analysis are displayed on an interactive

map and navigated by the user

Alternate Course
1 (A1):

1. The user proceeds directly to the second stage of the tool

Alternate Course
2 (A2):

1. The user clicks ‘Run Stage One’ or ‘Run Stage Two’
without setting parameters

2. The tool is run using the default parameters

27

Figure 19 - Activity Diagram showing Main Use Case for Project Tool

28

6.2 System design and architecture

6.2.1 System description
The tool is designed to be sufficiently light-weight to run locally on the average personal
computer for smaller AOIs. However, searches over larger areas or for imagery captured
over longer periods of time require higher specifications. As described in Table 4 the
client computer retrieves and holds only the required imagery from both the Sentinel
Hub and DigitalGlobe databases.

6.2.1.1 Part 1 – The Programming language: Python front-end and back-end

From a software architecture perspective all code used by the tool was written in

Python [39], a highly versatile object-oriented programming language that is portable

enough to run on many variants of UNIX, Mac, and Windows.

In the project proposal the advantages and disadvantages of MATLAB and Python were

compared, with both technologies proving viable for this project. Following further

research I found that the tools available for accessing and manipulating satellite imagery

data were principally written in Python. Consequentially this project focusses on a

solution using this language, however the libraries which are used also access other

languages such as HTML and JavaScript.

Python methods and packages provide both the front-end and back-end of the tool:

displaying the UI, handling user inputs, sending requests to satellite imagery servers,

managing the data which is returned, performing the analysis, and presenting this back

to the user.

The open source package/environment management system Conda [40] was used to

manage the complex inter-dependencies of the various Python libraries required for the

tool. A comprehensive list of the libraries used for the project is provided in section 67.

6.2.1.2 Part 2 – The Tool Environment: A Jupyter Notebook server-client structure

The tool is hosted and run in a Jupyter Notebook browser-based environment [41].

Jupyter Notebook is an open-source web application based on a server-client structure.

It is built for developing, documenting, and executing code in Python using an IPython

kernel by default.

6.2.1.3 Part 3 - The UI: Folium Library mapping and ipywidgets Library user interaction

The ipywidgets [42] library is specifically designed for Jupyter notebooks and provides

access to the IPython kernel’s interactive HTML widgets. The tool utilises these widgets

to receive, and also restrict, user inputs from within a UI.

The Folium [43] library acts as a Python wrapper for a JavaScript tool called Leaflet [44].

The tool uses Folium to generate several interactive Leaflet maps based on the user

input received via the UI widgets.

6.2.1.4 Part 4 – The satellite imagery servers: Sentinel Hub and DigitalGlobe

External imagery servers are accessed by the tool to retrieve satellite imagery data. Low-

resolution Sentinel-2 imagery access is provided by Sentinel Hub and downloaded via

HTTP from the Copernicus Open Access Hub [45]. High-resolution Worldview-3 imagery

is provided by DigitalGlobe, who use AWS for cloud-based storage of all of their content

which is accessed through RESTful web service APIs.

29

6.2.2 Map rendering design
The map is designed from an end-user perspective so as to be as user-friendly as

possible. The basemap design uses OpenStreetMap tiles, these were chosen due to the

balance between the speed at which they render and the detail they provide.

6.2.2.1 Zoom level

When a map is rendered the zoom level default is based on the resolution of the

satellite imagery being returned. For low-resolution imagery this is set at zoom level 14,

and for high-resolution imagery this is at zoom level 17. The maximum possible zoom

level is also increased from 18 to 21 when high-resolution imagery is displayed to allow

closer inspection by the user.

Where imagery is not being displayed, for instance when the tool is initiated, a lower

default zoom level is used to allow the user to navigate to their AOI with as few mouse

clicks as possible.

6.2.2.2 Latitude and longitude coordinates

When a map is rendered with retrieved satellite imagery the latitude and longitude

coordinate defaults for the centre of the map are set to those provided by the user.

When the tool is initiated this is set in combination with the zoom level as above to

provide a view of the South China Sea (Figure 1).

6.2.2.3 User Interaction

As demonstrated in section 3.3 there are several elements of user interaction included

in the map design. The user can navigate the map by dragging it and using the provided

buttons to zoom in and out. A plug-in was implemented so that it is possible to extend

the map to full-screen mode. Each of the layers, other than the basemap layer, can be

displayed or hidden by the user in the layer control widget panel.

6.2.2.4 Map Layers

Every map rendered by the tool includes the basemap layer, which as stated is

OpenStreetMap. The key purpose of the basemap layer is to enable the user to

orientate themselves and locate their AOI, it is detailed with world land polygons, global

ocean polygons, country labels, and at lower zoom levels city, building, and road labels

too.

The remainder of the layers provide specialised data based on the user input. These are

known as feature layers and are displayed in the order shown in Figure 5. A brief

description of each is provided below:

• Low-resolution satellite imagery layers
For each timeframe provided by the user a low cloud imagery mosaic is constructed

using the visible spectral bands. Each image in a mosaic is grouped together for display

as a single layer in the correct geolocation. The brightness of these layers is scaled up by

a factor of 3 for visualisation.

• Low-resolution combined cloud mask layer
To produce each low-resolution imagery mosaic a cloud mask is calculated, detailed in

implementation section 7.4.1.4. The cloud cover is of interest to the user and so the

30

cloud mask from each timeframe is combined and displayed as a single feature layer, as

illustrated in Figure 20.

Figure 20 - Imagery mosaics from two timeframes over the same AOI and resultant combined cloud mask

• Low-resolution land cover classification layers
A classification algorithm, detailed in implementation section 7.4.4 is applied to the

pixels in each low-resolution imagery mosaic to classify the land cover. This is displayed

as a separate feature layer for each timeframe.

• Low-resolution land cover change analysis layer
The land cover classification of each timeframe is compared on pixels where the

combined cloud mask does not detect cloud coverage. This is displayed as a square

polygon with outline and fill opacity levels set based on the level of change detected as

illustrated in Figure 21. Areas with high change detection have more clearly marked

polygons. The polygons are combined in to a single feature layer.

Figure 21 - Example of low-resolution land cover analysis layer

• Low-resolution CNN change analysis
The low-resolution CNN is applied to each image in the low cloud imagery mosaic, and

the results of which are compared between timeframes. As with the low-resolution land

cover change analysis layer, these results are displayed as a combined feature layer of

square polygons with outline and fill opacity levels set based on the level of change

detected between timeframes.

• High-resolution satellite imagery layer
For performance reasons only a single high-resolution image is returned by the tool for

each AOI. The imagery is pansharpened and displayed in the correct geolocation.

31

• High-resolution Object Detection CNN
The high-resolution Object Detection CNN is applied and where the prediction

confidence of a detected object is greater than the user’s pre-specified threshold the

tool draws a bounding box around the object on the image and provides the class name

of the object identified within the bounding box. The tool displays the image as a feature

layer in the map interface for the user to interactively explore.

6.2.3 UI design
The UI design, shown in Figure 22, is based on the core principles of clarity, flexibility,

and efficiency.

6.2.3.1 Clarity

The widget labelling and layout is deigned to be as self-explanatory and intuitive as

possible. Only the necessary controls are provided for the core tool functionality and a

user who is unfamiliar with the software would be able to quickly get to grips with the

UI. Default values are set for each widget to indicate sensible inputs. When the user runs

the tool it can take several minutes for imagery to be returned and so during this time

updates are provided at key points in the process, initially to confirm the user inputs and

then on the status of imagery retrieval and analysis.

6.2.3.2 Flexibility

Despite the software being designed with some functional order in mind the tool can

run Stage One and Stage Two in any combination, for instance to only request high-

resolution imagery or to request low-resolution imagery for multiple AOIs. The user can

either type their latitude and longitude coordinates in a freetext box for maximum

precision, or use the slider functionality instead. All latitude and longitude combinations

are accepted, including those near the North/South poles. Any period of whole weeks,

up to a maximum of roughly two months, can be set as the length of each timeframe for

low-resolution imagery retrieval to be attempted.

6.2.3.3 Efficiency

The limitations within the UI are set in combination with the underlying Python code to

ensure an efficient user experience, and to prevent an inadvertent request for excessive

quantities of satellite imagery data. The coordinate slider and freetext boxes are linked

and changing one will update the other automatically. When running the tool all widget

inputs are stored so that the user does not need to re-enter them between Stage One

and Stage Two.

Figure 22 - Close-up of UI

32

7 Implementation
This section details all aspects related to the implementation of the project tool. This

includes the technologies, tools, programming languages, and servers/databases used.

7.1 Programming languages and libraries
As set out in 6.2.1.1, Python is the primary programming language I have used for the

tool.

7.2 Databases and servers
Due to the volume of satellite imagery data available and the accelerating velocity at

which is continues to be produced it was decided that local data storage would only be

suitable for the imagery pertinent to the area of interest at the time of use. The retrieval

time for data from external satellite imagery providers was tested and designs put in

place to limit the waiting period required when accessing these servers in the tool.

7.3 Map rendering and UI
As set out in 6.2.1.3, a lightweight map rendering solution has been applied which uses

the Folium [43] Python library. The ipywidgets [42] Python library is used to manage

user interactivity and the tool is hosted in a Jupyter Notebook. Detail of the map

rendering and UI implementation is in section 7.4.8.

7.4 Implementation details
To manage the inherent complexity of this multi-stage project I split the implementation

in to sub-components. Each sub-component refers to a coding or research element of

the implementation that is modular and incremental. To reduce the risk that excessive

time spent on one aspect of the project would impact on a later stage a time-limit was

assigned to each sub-component which was strictly adhered to. These are ordered to

convey all aspects of the implementation to the reader in a meaningful and coherent

way. However, in reality several of the components were performed in parallel at times,

or revisited following a finding or issue at a later stage.

7.4.1 Acquiring Sentinel-2 satellite imagery
As part of the background research I identified two main satellite missions for which

visible-spectrum open data was available, NASA’s Landsat 8 and ESA’s Sentinel-2.

Although both were viable sources for satellite imagery, the Sentinel-2 satellites have a

slightly higher resolution in certain spectral bands, a more frequent revisit time, and are

due to stay in active use for longer. Also, as mentioned in section 4.1.2.3, it was found in

testing that Landsat 8 imagery was not available over the regions that this tool would be

primarily focussed on. Having decided to focus on Sentinel-2 the objective of this sub-

component was to build a set of Python modules capable of retrieving suitable format

Sentinel-2 imagery in specific areas captured during specific periods of time from a web

service database.

7.4.1.1 The sentinelhub-py library

The core library used for this aspect of the tool was sentinelhub-py [46], which is written

and maintained by ‘Sentinel Hub by Sinergise’ [47]. My research and testing showed that

despite there being multiple libraries offering a similar functionality, a large number of

these were not as reliable with either limited functionality or multiple usability

issues/bugs. The sentinelhub-py library was the tool of choice, despite being a paid

33

service, after a successful research application to the European Space Agency’s Open

Science Earth Observation call: ‘The Open Science Earth Observation (OSEO) call offers

to scientists the opportunity to exploit at no cost a full archive of EO data for science,

applications and technological innovation, by offering Third Party services which exploit

state of the art ICT.’ [48]

7.4.1.1.1 Open Geospatial Consortium Web Map Service and Web Coverage Service

requests

The sentinelhub-py package allows users to make Open Geospatial Consortium (OGC)

Web Map Service (WMS) [49] and Web Coverage Service (WCS) [50] requests to their

map server. WMS requests serve georeferenced map images, whilst WCS requests serve

coverage data. Both types of requests were found to be useful with the WCS request

service allowing spatial resolution to be specified; an important factor for the

performance of Computer Vision algorithms.

The sentinelhub-py library also enables users to download raw data from AWS in ‘.SAFE’

format [51]. To fully utilise the open source nature of Sentinel-2 imagery data my

preference would have been to use the library to retrieve imagery from AWS.

Unfortunately during the time that this tool was being developed the access rights to

the relevant Sentinel-2 AWS bucket were in the process of changing [52], this would

have caused the tool to break. For this reason the tool has been built utilising the OGC

WCS request service methods of sentinelhub-py.

7.4.1.2 Sentinel Hub set-up and OGC WCS imagery specification

In order to use the sentinelhub-py library to access Sentinel Hub services a Sentinel Hub

account was required, once set up the next stage was to configure an instance ID (alpha-

numeric code of length 36) with access to a layer containing all of Sentinel-2’s Level-1C

data bands using the Sentinel Hub Configurator [53]. Section 4.1.1.2 gives detail on why

Level-1C was most suitable processing level for the tool.

The key arguments that the tool passes within the WCS request method are:

• layer – The 'BANDS-S2-L1C' layer is specified to access the Sentinel-2 imagery

source with all 13 available bands

(B01,B02,B03,B04,B05,B06,B07,B08,B8A,B09,B10,B11,B12)

• resx, resy – For both x (column) and y (row) resolutions ‘10m’ is requested by

the tool, this is the best possible native resolution of some of the bands in

Sentinel-2 imagery

• time – Either a single date or a range of dates in ISO8601 format can be passed

in this argument. In the tool I take a range of dates based on user input.

• instance_id – As above, an instance ID was configured to access the required

Sentinel-2 data and passed in this argument.

• custom_url_params – An issue I had faced using this method was that a

‘Sentinel Hub’ watermark logo appeared in the bottom left corner of each

method returned, significantly impacting on algorithm performance. By passing

‘{CustomUrlParam.SHOWLOGO: False}’ in this argument this logo was removed

from the images returned.

• bbox – This argument specifies the AOI that the imagery is being requested for

within bounding box coordinates. It takes an instance of the sentinelhub-py

BBox method which is in World Geodetic System 1984 (WGS84, EPSG:3857)

34

Coordinate Reference System (CRS) format. The complex approach I’ve taken to

calculate accurate bounding box coordinates based on the user’s inputs is

discussed in section 7.4.1.3.

The appendix section 11.7.3 provides the Python method that issues these sentinelhub-

py WCS requests.

7.4.1.3 Calculating distance-based bounding box coordinates

One of the core functions of this tool is to return imagery suitable for Computer Vision

algorithms based on a user’s input. These inputs are a point on the map in longitude and

latitude WGS84 CRS degrees, and also the distance from this point in km that is to be

retrieved and analysed.

To input imagery into the CNN detailed in 7.4.3 it must be of shape 256 by 256 pixels. As

the imagery returned by the sentinelhub-py WCS request method is at a resolution of

10m2 per pixel this translates to square imagery with precisely 2.56km2 surface

coverage. The tool scales up the user-provided distance so that the imagery returned

can be split in to a square grid containing a whole number of 2.56km2 image tiles.

To calculate the bounding box coordinates of this grid the PyGeoTools [54] library is

used. This library is a Python adaptation of the java code written by Jan Philip

Matuschek [55] which addresses the challenge illustrated in Figure 23 of calculating

distances in metres and representing them in WGS84 degrees.

Figure 23 - Variation with latitude of represented distances (in degrees or pixels) on the Mercator projection
per actual distances (in meters) on Earth surface. [56]

The PyGeoTools methods were applied to find the minimum and maximum longitude

and latitude coordinates of points for which the great-circle distance [57] from the user-

provided location on the map is equal to the scaled-up distance calculated in the

previous step. These coordinates are used to create the bounding box for the total area

to be retrieved. Figure 24 provides a graphical illustration of these calculations and

resultant grid.

35

Figure 24 - Graphical illustration of user-inputs and resultant tile grid

The formula used in this algorithm assumes that the Earth is a perfect sphere, however

due to the planet’s true ellipsoidal shape there is the potential for a very slight error

(<0.5%) in the calculation which is maximised at median latitudes. To account for this

the images are reshaped where they do not perfectly meet the 256 by 256 pixel

specification.

The tool retrieves each grid tile image individually using the sentinelhub-py library’s

BBoxSplitter method, rather than requesting imagery for the entire area and splitting it

locally once retrieved. This approach was taken to reduce the performance impact of

large AOI downloads, and to prevent large areas of imagery being returned with no

data; a scenario which occurs when a Sentinel-2 image swath only partially intersects

the bounding box.

7.4.1.4 Cloud cover algorithm

Due to the high revisit rate of Sentinel-2 satellites it is likely that multiple images will be

returned for a given AOI and timeframe. Where this occurs the imagery for each sub-

bounding box is prioritised and retained by the tool based on the level of cloud cover

present, presenting to the user a mosaic of the lowest possible cloud cover images for

the given AOI and timeframe.

The WCS request method accepts a maxcc argument which is used to specify the

maximum proportion of cloud coverage for returned imagery. In testing this was found

to be unsuitable as the maxcc cloud coverage is estimated on the entire Sentinel-2 tile

and not just for the region defined by the bounding box. I implemented a more effective

approach by adapting the algorithm proposed in J. Braaten, et al. [58]. The spectral

bands used in the original algorithm are based on those captured by the Landsat

sensors. However, as the Sentinel-2 instruments were cross-calibrated in their

development with Landsat 8 sensors the equivalent bands were found to have

satisfactory results in testing. The algorithm is applied to each image by the

‘image_cloudMask_cloudScore_date’ method, shown in appendix section 11.7.3, to

create a cloud mask and prioritise imagery. Figure 25 gives an example of an image with

high cloud cover and the cloud mask produced as a result.

36

7.4.2 Creating a satellite imagery training dataset
As stated in 5.1 a key functional requirement for the tool was to use a CNN to identify

change of interest in satellite imagery. There is no pre-trained Neural Network available

for this specific task, and also limited labelled training data available at Sentinel-2

resolution. That which is available is unsuitable, for instance from locations on the

planet (e.g. cities in Europe [59]) which are not representative of the geographic location

of primary focus for the tool.

Using the label-maker tool from Development Seed [60] I was able to build my own

training data set. This was an extensive process and full implementation details are

provided in the annex section 11.5.

7.4.3 Leveraging cloud computing power to train a deep residual CNN

7.4.3.1 ResNet50 deep residual architecture

As mentioned in 4.2.2, several of the best performing entries in recent satellite imagery

land cover classification competitions [61] [62] used a ResNet50 [38] CNN, and so for

this tool the same architecture has been applied. An interactive visualisation of the

Resnet50 architecture can be accessed on GitHub [63].

7.4.3.2 AWS cloud computing technology

Training a CNN with as many layers as ResNet50 is a computationally-intensive task to

undertake. Locally available hardware was not powerful enough for the purpose and so

alternative methods were investigated.

Using cloud compute power was the most cost-effective approach identified, with AWS

offering on-demand Elastic Cloud Compute (EC2) instances specifically engineered for

‘Machine Learning Use Cases’ [64].

The EC2 instance used for training was the p2.xlarge [65] which provides an NVIDIA K80

GPU with over 60 GiB of RAM and an environment preinstalled with Keras, Tensorflow

and other libraries required for GPU-powered Neural Network training. I held the

labelled data for training within an AWS S3 bucket to reduce upload/transfer times and

hence costs once the instance was initiated. To control these services from a local

machine I set up a configuration file and used the AWS Command Line Interface tool

Figure 25 - Example of Sentinel-2 image with high cloud cover and resulting cloud mask

37

[66]. Section 11.6.2 provides further details, such as model accuracy improvements

during training.

7.4.4 Utilising Google Earth Engine for land cover classification
Despite using a deep residual architecture, the size of the manually labelled training

data set, used as a result of 11.5, limited the accuracy of the CNN and the algorithm was

not performing to the required standard to use as the only indicator of change-of-

interest for the tool.

Despite issues set out in 4.1.2.3 with GEE I was able to devise a method to train and then

transfer a model utilising the GEE Classification library’s CART algorithm [67]. This

algorithm was trained using pixels I had hand-selected from a composite of cloud-free

Sentinel-2 imagery. The three classes I created for this algorithm were ‘water’,

‘vegetation_natural’ and ‘urban_manmade’, and in total over 450 points from countries

and regions near the South China Sea were selected as shown in Figure 26.

In contrast to the First Stage CNN, for which the training data available was imagery in

the visible RGB spectral bands, this algorithm was trained on the full range of spectral

bands captured by the sentinel-2 MSI (Table 2, page 18). The data was split 70/30 for

training/testing and Table 5 shows the confusion matrix created when validating the

CART on the test data following training. The algorithm applied as scale over an area in

Brunei is shown in Figure 27. The JavaScript code I used to produce the CART can be

found in section 11.7.1 and I’ve shared it publicly on GEE [68].

Figure 26 - CART training points selected within GEE. Left – graphical map. Right – Sentinel-2 composite

38

Table 5 – Confusion matrix showing performance of CART on test data

urban_manmade vegetation_natural water

urban_manmade 53 1 1

vegetation_natural 0 49 0

water 0 0 47A
ct

ua
l c

la
ss

Predicted Class

The implementation process involved taking the JavaScript output of the CART from GEE

and building it manually within the project tool, replicating the algorithm by using

if/elsif/else logical statements in Python. Within GEE the Sentinel-2 data is in UINT16

format with each spectral band representing TOA reflectance scaled by 10,000, whereas

Sentinel Hub returns imagery at true TOA reflectance in the range 0-1. A factor was

applied to leaf node values to account for this.

When testing the algorithm on Sentinel-2 data within the tool it was found that the

values used to split at each CART leaf node required further scaling. This is in part due to

the min() function being used in GEE to produce the cloud-free Sentinel-2 mosaic that

the CART was trained on, which unfortunately results in the majority of pixels in the

training data being taken from cloud shadows instead.

The process for this additional scaling was iterative, with a range of values proportional

to the average pixel value of the target image being applied to the CART leaf node split

values, and the resulting land cover classification outputs being visually compared for

accuracy. Following this comparison the two images showing the most accurate

classification were selected and their scaling factors were taken as upper and lower

bounds for the next range of factors to be tested. This was repeated until no

improvement was observed in additional iterations. An illustrative example with a code

sample is provided in 8.1.1.

Finally, higher cloud coverage in imagery causes the average pixel values to be

disproportionately high. To account for the detrimental impact of this on the land cover

Figure 27 - Side-by-side comparison of Brunei Sentinel-2 composite and CART land cover predictions within
GEE

39

classification accuracy an additional scaling factor is also applied to the leaf node values

which is based on the cloud mask created in section 7.4.1.4. If the images within a

mosaic were selected from within a sufficiently wide timeframe then cloud coverage

tends to be low and this factor is close to 1.

7.4.5 Analysing change between timeframes
At this stage a low-cloud imagery mosaic for each timeframe was available, suitable to

be used as input for both the CNN and CART algorithm to produce comparison analysis.

The tool applies the CNN to each mosaic tile and compares the output predictions for

the same geolocation from each timeframe. If there is significant change in the two

outputs this is considered to be a good indication of change of interest and can be

highlighted to the user.

The CART algorithm is applied and land cover classification is compared only in pixels

where no cloud coverage is identified by the cloud mask algorithm in either timeframe’s

imagery tile. The mosaic imagery tile with highest proportional change is highlighted to

the user, as illustrated in sections 3.3.2 and 6.2.2.4.

7.4.6 Retrieving high-resolution imagery from DigitalGlobe
In Stage Two this tool requests and analyses high-resolution satellite imagery.

DigitalGlobe (4.1.2.2) was the commercial imagery provider that was chosen over Planet

Labs (4.1.2.1) for this stage of the tool for several reasons:

Firstly, the imagery collected by DigitalGlobe’s WorldView-3 and Worldview-4 satellites

has the highest possible spectral resolution publicly available at 0.31cm/pixel.

Secondly, DigitalGlobe provide a well-maintaned Python Software Developer’s Kit called

gbdxtools which can be used for ordering imagery and launching workflows on

DigitalGlobe's GBDX [69].

Thirdly, in March 2018 the Defense Innovation Unit Experimental (DIUx) and the

National Geospatial-Intelligence Agency released a new labelled satellite imagery

dataset, xView, as part of the xView Challenge [70]. The imagery was collected from

DigitalGlobe’s WorldView-3 Satellites and is annotated with over one million bounding

boxes across 60 object classes. The dataset was accompanied by benchmark CNN

models using Single-Shot Multibox Detector (SSD) [71] architectures that had been pre-

trained on the data [72].

7.4.6.1 Imagery access

After submitting a research proposal to DigitalGlobe through contacts made at the

Satellite Applications Catapult they have agreed to provide me with access to their

imagery for the purposes of this project. Whilst waiting for these permissions to be

granted I have used their ‘Evaluation Accounts’ which provide full use of their services

for up to 30 days.

7.4.6.2 Imagery requests

Due to the higher resolution of this imagery the data takes significantly longer to

download and process than Sentinel-2 imagery for the same AOI. To manage the impact

of this on the performance of the tool a different approach was required for this stage of

the project. When a user requests imagery the gbdx.catalog.search method within the

40

gbdxtools library is used to find metadata on all imagery that has been captured over a

given AOI, following this the CatalogImage method is used to retrieve an image.

7.4.6.2.1 Identifying suitable imagery

The conclusion of testing using the in-built Python ‘time’ module, shown in 8.1.2, was

that for practical performance the AOI for high-resolution imagery needed to be

between 1/3 and 1/4 the size of the 2.56km2 sub-areas of low-resolution imagery.

DigitalGlobe use the same CRS format as Sentinel Hub (WGS84, EPSG:3857), and so the

same coordinate inputs can be used for both stages of the tool. These inputs are

converted to a Well-known text (WKT) format polygon as required by the

gbdx.catalog.search method using the shapely.geometry library. The GBDX catalog is

then searched with filters set to only return details of Worldview-3 Satellite imagery that

intersects the WKT polygon.

The metadata of matching imagery is returned and the tool creates a list of particular

properties of interest such as CatalogID (unique identifier used for requesting imagery),

capture date, and cloud cover %. The cloud cover property is a suboptimal indicator of

image quality as it is based on the entire parent image strip. Unfortunately, in contrast

to the Sentinel-2 imagery, it is not feasible to download all image matches and apply a

cloud mask locally due to the size of the data.

When GBDX acquire an imagery strip it's called an ‘acquisition’ and it sits in an archive

until it is ‘ordered’ by a user. The image is then moved from the archive to a server

location where it is regularly accessible as a ‘product’. Although searching the catalog for

candidate imagery returns all ‘acquisitions’, the CatalogImage request that retrieves the

imagery in the next step only looks for ‘products’ that are immediately available. If a

CatalogID is requested that is still only an ‘acquisition’ the gbdxtools method will return

an error. To work with ‘acquisition’ images they first need to be ordered, which requires

premium account level permissions and also takes significant time. This is out of scope

for the purposes of this tool.

The gbdx.catalog.search list returned is sorted by descending acquisition date, and then

sorted again by ascending cloud cover %. The tool then makes a CatalogImage request

for each image in sorted order, with exception handling for the errors returned when

resuesting ‘acquisitions’, until a ‘product’ image is successfully retrieved. The reason for

the two-stage sort is so that if several images have the same cloud cover % a retrieval is

attempted for the more recently captured images first. Before sorting the images are

grouped by 10% of cloud cover. This grouping is to ensure, for example, an image

captured in 2016 with 6% cloud cover does not take priority over an image captured in

2018 with 7% cloud cover.

7.4.6.2.2 Retrieving imagery

As stated, the tool requests imagery using the gbdxtools CatalogImage method. This

takes as arguments the CatalogID identified in the previous step, a bounding box to crop

the parent strip to the desired AOI, and a flag for whether to return pansharpened

0.31cm/pixel bands (the resolution of the xView dataset that the benchmark SSD CNN

model was trained on).

The tool retrieves imagery and converts it into an 8-bit RGB tiff format that is suitable

for both displaying as a layer close to true likeness on the graphical map, and also

41

feeding as input for object detection to the benchmark SSD CNN model. Several

methods were tested when attempting to return imagery of this type. Figure 28 shows

the bizarre outcome of DigitalGlobe’s recommended approach: combining the gbdxtools

image.astype() method, which converts the image from 32-bit default to 8-bit, and the

image.geotiff() method, which saves the RGB bands (bands 4, 2, and 1) of the image as a

tiff file.

Figure 28 – Applying image.astype('uint8') and image.geotiff methods

The seemingly random colours in Figure 28 are the result of value overflows during the

change in precision from the 32-bit default to 8-bit performed by the image.astype()

method.

Figure 29 shows the result of another approach which avoids using the image.astype()

method, instead passing spec='rgb' as an argument in the image.geotiff() method to

return an 8-bit RGB tiff that's been contrast stretched to the 2nd and 98th percentile

values of the parent strip. A different issue occurs here wherein the image appears to

have overcompensated in the red band. This is caused by the contract being stretched

based on values of the parent strip rather than the pixels within the returned image.

42

Figure 29 - Applying image.geotiff method with spec='rgb' argument

After further investigation a workaround was identified, which applies the gbdxtools

image.rgb() method to create an 8-bit RGB array, and then uses the Python Pillow library

to convert and save this image as a tiff for input to the benchmark SSD CNN model. This

approach is suboptimal as the tiff that is generated does not contain any of the original

GeoTiff geospatial information, however this information can be stored separately and

as shown in Figure 30 the image that results from this workaround method is suitable

for displaying as a true-colour layer in the tool.

Figure 30 - Applying image.rgb() method and converting with Pillow library

7.4.7 Applying Object Detection CNN to high-resolution imagery
Once an image is acquired at a suitable spatial resolution and in the correct format the

tool loads and segments it in to 300*300 pixel chips and runs the benchmark SSD CNN

on each chip, producing a maximum of 250 object detection predictions. Where the

prediction confidence of a detected object is greater than a threshold pre-specified in

the UI by the user the tool draws a bounding box on the image and provides the class

name of the object identified within the bounding box.

43

Once this process is complete the tool displays the image as a feature layer in the map

interface for the user to interactively explore.

7.4.8 Building the UI
A simple but effective GUI wrapper was developed to demonstrate the tool using a

combination of the Folium [43] and ipywidgets [42] Python libraries.

The ipywidgets library provides interactive HTML widgets specifically designed for

Jupyter notebooks. The tool utilises these widgets to receive, and also restrict, user

inputs. The tool then utilizes the Folium library to visualize data retrieved/created in

Python on an interactive leaflet.js map.

In testing the longitude and latitude sliders were found not to have the required

sensitivity to select degrees to the desired granularity of 4 decimal places, and so a

freetext box is also provided to the right of each. The freetext boxes and sliders are

linked so that changing one automatically updates the other. The tool uses the Folium

LatLngPopup method to show the latitude and longitude coordinates of the position on

the map where a user performs a mouse click. These coordinates can then be copied

manually in to the freetext boxes provided by the user.

These and other features, such as the full-screen option and layer control, were shown

in the project trailer in section 3.3 and described in more detail in the design sections

6.2.2 and 6.2.3.

44

8 Testing examples
The following section provides details of testing additional to that included in the earlier

sections of the report.

8.1 Unit testing
Throughout the development of the project tool every Python method that was built

required extensive testing to verify that behaviour was as intended. The code sample

below is an example of the unit testing applied to confirm that the bounding boxes

produced to request imagery from Sentinel Hub matched the specifications required for

the project tool purposes.

"""

Import required libraries for testing

"""

from shapely.geometry import shape, Polygon, asPolygon

from sentinelhub import BBoxSplitter, CRS

import math

from geoloc.geolocation import GeoLocation

"""

Set example user-provided parameters, repeat with other parameters for additional testing

"""

km_per_tile = 2.56 # intended width and height of returned imagery

user_Lon_deg = -0.1869 # Example longitude coordinate

user_Lat_deg = 51.4937 # Example latitude coordinate

user_dist_km = 3.2 # Example of user-provided distance in KM

"""

Test A – do the functions output the correct grid size and upper-distance:

Precursor to 'bbox_split_grid' method outputs 3

Precursor to 'user_dist_km_upper' method outputs (2.56*3)/2

"""

bbox_split_xy = math.ceil(user_dist_km/(km_per_tile/2)) # using ceiling function to calculate

minimum number of bounding box splits based on user input

user_dist_km_upper = bbox_split_xy*(km_per_tile/2) # distance calculated to ensure user AOI wi

thin bounding box

output should be 3, and (2.56*3)/2

if bbox_split_xy == 3 and user_dist_km_upper == (2.56*3)/2:

 print("Test A - PASS")

else:

 print("Test A - FAIL")

"""

Test B – is the output bounding box within required accuracy of desired width/height in KM:

Precursor to 'user_large_bbox' method outputs coordinates with distance close to (2.56*3)/2

"""

user_loc = GeoLocation.from_degrees(user_Lat_deg, user_Lon_deg) # Create ‘Geolocation’ object

user_SW_loc, user_NE_loc = user_loc.bounding_locations(user_dist_km_upper) # Produce bottom-le

ft and top-right coordinates for bounding box

western_midpoint_ratio = (user_loc.distance_to(GeoLocation.from_degrees(

 (user_SW_loc.deg_lat+user_NE_loc.deg_lat)/2,user_SW_loc.deg_lon))) / ((2.56*3)/2) # Create

western ratio for coordinate accuracy testing

northern_midpoint_ratio = (user_loc.distance_to(GeoLocation.from_degrees(

 (user_NE_loc.deg_lat),(user_NE_loc.deg_lon+user_SW_loc.deg_lon)/2))) / ((2.56*3)/2) # Crea

te northern ratio for coordinate accuracy testing

Output should be very close to 1

if 0.999 <= western_midpoint_ratio <= 1.001 and 0.999 <= northern_midpoint_ratio <= 1.001:

 print("Test B - PASS")

else:

 print("Test B - FAIL")

"""

Test C – are the tiles within the larger bounding box close to desired size:

Precursor to 'user_sub_bbox_coords_v2' method outputs tiles with width and height close to 2.5

6km

45

"""

With larger bbox geo coords calculated we now split to tiles of grid:

user_polyg = asPolygon([[user_SW_loc.deg_lon, user_SW_loc.deg_lat],[user_SW_loc.deg_lon, user_

NE_loc.deg_lat],

 [user_NE_loc.deg_lon, user_NE_loc.deg_lat],[user_NE_loc.deg_lon, user_

SW_loc.deg_lat]])

With polygon created as input to splitter method, feed in with previously calculated number

of sub_bboxes

user_bbox_splitter = BBoxSplitter([user_polyg], CRS.WGS84, (bbox_split_xy, bbox_split_xy))

user_sub_bbox_list = []

width_length_count = 0

extract lon/lat from each bounding box and test distances

for box in range(len(user_bbox_splitter.get_bbox_list())):

 lon1, lat1 = user_bbox_splitter.get_bbox_list()[box].get_lower_left()

 lon2, lat2 = user_bbox_splitter.get_bbox_list()[box].get_upper_right()

 user_sub_bbox_list.append((lon1, lat1, lon2, lat2))

 height_bbox_km = (GeoLocation.from_degrees(lat1,lon1).distance_to(GeoLocation.from_degrees

(lat2,lon1)))

 length_bbox_km = (GeoLocation.from_degrees(lat1,lon1).distance_to(GeoLocation.from_degrees

(lat1,lon2)))

 if 0.999 <= height_bbox_km/2.56 <= 1.001 and 0.999 <= length_bbox_km/2.56 <= 1.001:

 width_length_count += 1 # increments for each tile if accuracy levels confirmed

 else:

 print(height_bbox_km/2.56,length_bbox_km/2.56)

test whether all tiles are within desired accuracy

if width_length_count == len(user_bbox_splitter.get_bbox_list()):

 print("Test C - PASS")

else:

 print("Test C - FAIL")

Output:

Test A - PASS

Test B - PASS

Test C - PASS

8.1.1 Testing the GEE CART land cover algorithm
As described in 7.4.4 a factor was set when importing the CART algorithm from GEE in to

Sentinel Hub to account for the different imagery brightness. Figure 31 illustrates an

iteration of this testing alongside the original image, in which the second image gives the

most accurate classification of land cover. The code used was an adaptation of the

‘landcover_cart’ method in section 11.7.3.

Figure 31 – Illustration of imported CART algorithm classification with varying factors applied, and original
image

46

8.1.2 Retrieval time for RGB imagery from DigitalGlobe
The method that sends requests to the DigitalGlobe servers restricts the size of the AOI

to limit the time for data to be retrieved and stored locally. Table 6 below illustrates the

run time recorded for various AOI sizes.

Table 6 - Time taken to retrieve and store imagery based on factor applied to original AOI

method factor applied to AOI retrieval and storage time (seconds)

GBDX_IMG_Request 1 1428.2145

GBDX_IMG_Request 1/2 466.3325

GBDX_IMG_Request 1/3 191.0298

GBDX_IMG_Request 1/3.5 139.6207

Code example, in which a factor of 1/3.5 is applied:

test_factor = 3.5 # Factor to test

sub_size = 2.56/test_factor # Reduce AOI by factor being tested

sub_AOI = user_GBDX_bbox(103.57945528900234,1.3386416396269512,sub_size/2) # Calcul

ate bounding box coordinates of reduced AOI

start = time.time() # Record time that image acquisition and processing begins

img_pan_rgb = CatalogImage('1040010031060B00', pansharpen=True, bbox=sub_AOI) # Req

uest image over reduced AOI from DigitalGlobe that is pansharpened

pan_np = img_pan_rgb.rgb() # Create true-colour image from acquired data

pan_plot = plt.imshow(pan_np)# Visually confirm image quality

pan_im = Image.fromarray(pan_np) # Convert array to Pillow ‘Image’ object

pan_im.save("image_returned_{}.tif".format(test_factor)) # Convert/save as .tif

end = time.time() # Record time that process completes

print(end - start) # Print time (in seconds)

Output:

139.6206760406494

8.2 User acceptance testing
To ensure the UI was handling the user inputs and running the underlying Python

methods appropriately the tool was tested manually. A summary of these tests is

provided in Table 7 below.

47

Table 7 - User Acceptance Testing Summary

Test Scenario Expected result Actual result Pass/Fail

1
User clicks on map to find

Latitude/Longitude coordinates

Tool displays coordinates in

location of mouse click
As expected Pass

2
User provides invalid

Latitude/Longitude coordinates

Tool does not attempt to request

imagery for provided

coordinates

User Interface restricts

input to valid coordinates
Pass

3
User provides non-existent

dates

Tool does not attempt to request

imagery for provided dates

User Interface restricts

input to valid dates
Pass

4

 'First' time-frame isn't

distinctly before 'Second'

timeframe

Tool does not attempt to request

imagery for provided dates

Tool attempts to request

imagery but notifies user

Fail but

accepted

5
Imagery is not available for

AOI/dates

Tool notifies user that imagery is

not available
As expected Pass

6
Cloud cover too high in imagery

for algorithms

Tool notifies user that low cloud

imagery is not available

Tool provides cloud mask as

layer for inspection

Fail but

accepted

7
Date range/AOI too large for

acceptable run-time

Tool does not attempt to request

imagery for date range/AOI

User Interface restricts

input to reduce run-time
Pass

8
User runs Stage One and Stage

Two in any combination

Tool requests imagery on basis

of user input
As expected Pass

9
User applies different

combinations in layer control
Tool displays only top layer As expected Pass

10
Digital Globe or Sentinel Hub

server failure

Tool notifies user that

connection is not possible
As expected Pass

Additional analysis and testing examples are provided in section 11.6.

48

9 Evaluation and Conclusion
This section provides an overall assessment of the project and includes a critical

evaluation, lessons learnt and conclusion.

9.1 Critical Evaluation
The project had a very ambitious scope for an independent undertaking within the given

timeframe, with papers detailing comparable research citing teams of contributors. I

started with a complete lack of experience in satellite imagery analysis, cloud computing

and Computer Vision, and the majority of Python libraries implemented were

completely unfamiliar at project outset. To deliver a functional tool required a very

steep learning curve and also resilience to failure, as the cutting-edge technologies used

often proved unreliable to the point of unfeasibility after significant progress had been

made and time invested. After facing issues with cloud cover that were not anticipated I

produced my own cloud mask algorithm which I could apply to create a low cloud

imagery mosaic. This is an active area of research in the field.

The project required me to work with a variety of imagery sources, both open and

commercial, each necessitating a different approach for retrieval of suitable data.

Several types of analysis are performed on the imagery retrieved. With the low-

resolution imagery I used a deep residual CNN architecture as planned in the proposal

but complimented this with a multispectral CART following unsatisfactory results. For

the high-resolution imagery I have applied a cutting-edge object detection SSD CNN,

which only became available after work on the project had started. As might be

expected there are various ways in which the accuracy of the algorithms applied could

be improved, from acquiring better quality training data to fine-tuning the parameters.

I’ve provided more detail of these approaches and others in section 11.3.

Without a similar existing pipeline combining two types of satellite imagery for

comparison it wasn’t clear at outset whether the project was feasible, however I have

successfully produced a proof-of-concept tool that retrieves and displays both high and

low-resolution imagery, performing cutting-edge analysis on each. Taking the above into

account, the project has been a very challenging but rewarding learning experience. I

have significantly developed my Python programming and other technical skills, and

have built a good understanding of the state-of-the-art research and technologies in the

field of satellite EO. Section 11.3 provides a number of improvements that would have

been made given more time.

9.2 Lessons learnt
Several of the key lessons learnt whilst undertaking this project are summarised below.

9.2.1 Virtual environments
Python libraries are rarely built in isolation and often require specific versions of other

libraries to function. As the project progressed the number of libraries used grew to

almost 250, listed in section 67, and this created a complex set of version

interdependencies. After significant time was lost attempting to manually handle this I

learnt to use virtual environments within Conda [40].

49

9.2.2 ‘Good enough’ and ‘nice to have’
At times I had to remind myself that this was a proof-of-concept project and thus every

component did not need to be polished. Time was lost on small details that the reviewer

will most likely not notice, and knowing when to stop/avoiding perfectionism was a skill

I developed to deliver the project in time.

9.2.3 Unreliable technologies
Identifying earlier when a technology/library is unreliable would have saved significant

amounts of time. Upon finding a suitable tool on GitHub for instance, activity in the

‘Issues’ log and date of last commit are good indicators of whether the developers of a

library/tool are actively debugging and improving the technology.

9.2.4 Training data quality
Regardless of the design and architecture of the algorithm being trained, good quality

data is vital for a high-performance predictive model. A large portion of this project was

spent iteratively investigating and improving the quality of training data created for the

Stage One CNN, whereas in hindsight the scope of the project could have been changed

to allow a different pre-existing data source to be used instead.

9.3 Conclusion
This report has documented the process of researching, designing, and implementing

the project tool. The project’s goal was to investigate the field of satellite EO and the

associated cutting-edge technologies, concepts and techniques, and to produce a

relevant proof-of-concept satellite imagery retrieval and analysis pipeline tool from

scratch.

The report introduces the field of satellite EO and sets out the project deliverables and

objectives. In the background research (section 4) the relevant technologies, imagery

data sources, and concepts are discussed. A functional specification is provided and the

report details the system design and architecture. The implementation section gives an

in-depth breakdown of the key steps and testing that were necessary to successfully

build the tool, and further testing is also detailed. Finally, the report provides a critical

evaluation of the project deliverables and lessons learnt, and future recommendations

are provided in section 11.3.

50

10 References

[1] NASA, “NSSDCA Master Catalog,” 2017. [Online]. Available:

https://nssdc.gsfc.nasa.gov/nmc/. [Accessed 20th March 2018].

[2] ILS, “COMMERCIAL SATELLITE LAUNCH HISTORY,” 2013. [Online]. Available:

http://www.ilslaunch.com/node/33. [Accessed 20 March 2018].

[3] EUROCONSULT, “Satellite-Based Earth Observation Market Prospects to 2026,”

October 2017.

[4] UK Government, “Surrey satellite firm set for lift off from India,” 16 September

2018. [Online]. Available: https://www.gov.uk/government/news/surrey-

satellite-firm-set-for-lift-off-from-india. [Accessed 16 September 2018].

[5] space.com, “SpaceX Rocket Could Be 100-Percent Reusable by 2018, Elon Musk

Says,” 10 April 2017. [Online]. Available: https://www.space.com/36412-spacex-

completely-reusable-rocket-elon-musk.html.

[6] K. B. M. D. Rainer Sandau, “Small satellites for global coverage: Potential and

limits,” in ISPRS Journal of Photogrammetry and Remote Sensing, 2010, pp. 492-

504.

[7] P. Kansakar and F. Hossain, “A review of applications of satellite Earth

Observation data for global societal benefit and stewardship of planet Earth,”

Space Policy, vol. 36, pp. 46-54, 2016.

[8] DigitalGlobe, “U.S. Satellite Resolution Restrictions – LIFTED!,” 2014. [Online].

Available: http://blog.digitalglobe.com/news/resolutionrestrictionslifted/.

[Accessed 20 March 2018].

[9] M. Wired, “U.S. Department of Commerce Relaxes Resolution Restrictions

DigitalGlobe Extends Lead in Image Quality,” June 2014. [Online]. Available:

http://www.marketwired.com/press-release/us-department-commerce-relaxes-

resolution-restrictions-digitalglobe-extends-lead-image-nyse-dgi-1919482.htm.

[Accessed 20 March 2018].

[10] Gizmodo, “Scientists Need Your Help Spotting Seals in Antarctica,” 16 April 2018.

[Online]. Available: https://earther.gizmodo.com/scientists-need-your-help-

spotting-seals-in-antarctica-1825251396. [Accessed 1 May 2018].

[11] E. O. Nsoesie, P. Butler, N. Ramakrishnan, S. R. Mekaru and J. S. Brownstein,

“Monitoring Disease Trends using Hospital Traffic Data from High Resolution

Satellite Imagery: A Feasibility Study,” PubMed Central, 2015.

[12] Nature, “US government considers charging for popular Earth-observing data,”

24 April 2018. [Online]. Available: https://www.nature.com/articles/d41586-018-

04874-y. [Accessed 1 May 2018].

51

[13] U.S. Geological Survey, “Landsat 8 Data Users Handbook,” 2018. [Online].

Available: https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-1.

[Accessed 1 May 2018].

[14] NASA, “Landsat 8,” 2018. [Online]. Available:

https://landsat.gsfc.nasa.gov/landsat-8/. [Accessed 1 May 2018].

[15] USGS, “Landsat Processing Details,” [Online]. Available:

https://landsat.usgs.gov/landsat-processing-details. [Accessed 1 May 2018].

[16] European Commission, “What is Copernicus?,” 2018. [Online]. Available:

http://www.copernicus.eu/main/overview. [Accessed 1 May 2018].

[17] European Space Agency, “Sentinel-2 Heritage,” 2018. [Online]. Available:

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/heritage. [Accessed 1

May 2018].

[18] NASA, “ESA-NASA Collaboration Fosters Comparable Land Imagery,” 13 February

2013. [Online]. Available: https://landsat.gsfc.nasa.gov/esa-nasa-collaboration-

fosters-comparable-land-imagery/. [Accessed 1 May 2018].

[19] G. Forkuor, K. Dimobe, I. Serme and J. E. Tondoh, “Landsat-8 vs. Sentinel-2:

examining the added value of sentinel-2’s red-edge bands to land-use and land-

cover mapping in Burkina Faso,” GIScience & Remote Sensing, vol. 55, no. 3, pp.

331-354, 2018.

[20] L. Korhonen, Hadi, P. Packalen and M. Rautiainen, “Comparison of Sentinel-2 and

Landsat 8 in the estimation of boreal forest canopy cover and leaf area index,”

Remote Sensing of Environment, vol. 195, p. 259–274, 2017.

[21] European Space Agency, “Level-1C Processing,” 2018. [Online]. Available:

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c-

processing. [Accessed 1 May 2018].

[22] European Space Agency, “Level-2A Processing,” 2018. [Online]. Available:

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-

processing. [Accessed 1 May 2018].

[23] Planet Labs, “PLANET IMAGERY AND ARCHIVE,” 2018. [Online]. Available:

https://www.planet.com/products/planet-imagery/. [Accessed 20 March 2018].

[24] Planet Labs, “ROCKETING INTO 2018,” January 2018. [Online]. Available:

https://www.planet.com/pulse/rocketing-into-2018/. [Accessed 20 March 2018].

[25] Planet, “Planet: Understanding the Amazon from Space,” Kaggle, 2017. [Online].

Available: https://www.kaggle.com/c/planet-understanding-the-amazon-from-

space. [Accessed 20 March 2018].

52

[26] DigitalGlobe, “DigitalGlobe - Our constellation,” [Online]. Available:

https://www.digitalglobe.com/about/our-constellation. [Accessed 20 March

2018].

[27] The New York Times, “Governments Tremble atGoogle's Bird's-Eye View,”

December 2005. [Online]. Available:

https://www.nytimes.com/2005/12/20/technology/governments-tremble-

atgoogles-birdseye-view.html. [Accessed 20 March 2018].

[28] DigitalGlobe, “WorldView-3 Sensor Data Sheet,” 2014. [Online]. Available:

https://www.spaceimagingme.com/downloads/sensors/datasheets/DG_WorldVi

ew3_DS_2014.pdf. [Accessed 1 May 2018].

[29] Google, “Google Earth Engine API,” [Online]. Available:

https://developers.google.com/earth-engine/. [Accessed 20 March 2018].

[30] M. H. M. D. S. I. D. T. R. M. Noel Gorelick, “Google Earth Engine: Planetary-scale

geospatial analysis for everyone,” Remote Sensing of Environment, vol. 202, pp.

18-27, 2017.

[31] “google/earthengine-api/issues #16,” GitHub, [Online]. Available:

https://github.com/google/earthengine-api/issues/16.

[32] A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,”

2017. [Online]. Available: http://cs231n.github.io/convolutional-networks/.

[Accessed 20 March 2018].

[33] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” 2012.

[34] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex,” The Journal of Physiology, p.

106–154, 1962.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” 2015.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke and A. Rabinovich, “Going deeper with convolutions,” 2015.

[37] H. Kaiming, Z. Xiangyu, R. Shaoqing and S. Jian, “Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,” 2015.

[38] H. Kaiming, Z. Xiangyu, R. Shaoqing and S. Jian, “Deep Residual Learning for

Image Recognition,” 2015.

[39] Python Software Foundation, “Python,” 2018. [Online]. Available:

https://www.python.org/. [Accessed 1 May 2018].

53

[40] Anaconda, Inc., “Conda,” 2017. [Online]. Available: https://conda.io/docs/.

[Accessed 1 May 2018].

[41] Jupyter Team, “The Jupyter Notebook,” 2015. [Online]. Available: https://jupyter-

notebook.readthedocs.io/. [Accessed 1 May 2018].

[42] Jupyter Widgets, “ipywidgets GitHub Repository,” 2018. [Online]. Available:

https://github.com/jupyter-widgets/ipywidgets. [Accessed 1 May 2018].

[43] R. Story, “GitHub Folium respository,” 2013. [Online]. Available:

https://github.com/python-visualization/folium. [Accessed 1 August 2018].

[44] V. Agafonkin, “Leaflet.js,” 2017. [Online]. Available: https://leafletjs.com/.

[Accessed 1 May 2018].

[45] European Space Agency, “Copernicus Open Access Hub,” 2018. [Online].

Available: https://scihub.copernicus.eu/. [Accessed 1 May 2018].

[46] Sentinel Hub by Sinergise, “sentinel-py GitHub Repository,” 2018. [Online].

Available: https://github.com/sentinel-hub/sentinelhub-py. [Accessed 1 May

2018].

[47] Sentinel Hub by Sinergise, “Sentinel Hub services,” 2018. [Online]. Available:

https://services.sentinel-hub.com/oauth/subscription. [Accessed 1 May 2018].

[48] European Space Agency, “Welcome to the OSEO Call submission area,” 2018.

[Online]. Available: https://earth.esa.int/web/guest/pi-community/apply-for-

data/ao-

s?IFRAME_SRC=%2Fpi%2Fesa%3Fcmd%3Daodetail%26aoname%3DOSEO%26dis

playMode%3Dcenter%26targetIFramePage%3D%252Fweb%252Fguest%252Fpi-

community%252Fapply-for-data%252Fao-s. [Accessed 1 May 2018].

[49] Open Geospatial Consortium, “Web Map Service,” 1999. [Online]. Available:

http://www.opengeospatial.org/standards/wms. [Accessed 1 May 2018].

[50] Open Geospatial Consortium, “Web Coverage Service,” 2018. [Online]. Available:

http://www.opengeospatial.org/standards/wcs. [Accessed 1 May 2018].

[51] European Space Agency, “SAFE,” 2017. [Online]. Available:

http://earth.esa.int/SAFE/. [Accessed 1 May 2018].

[52] Sentinel Hub by Sinergise, “Changes of the access rights to L1C bucket at AWS

Public Datasets (Requester Pays),” 6 May 2018. [Online]. Available:

https://forum.sentinel-hub.com/t/changes-of-the-access-rights-to-l1c-bucket-at-

aws-public-datasets-requester-pays/172. [Accessed 1 July 2018].

[53] Sentinel Hub by Sinergise, “Sentinel Hub Configurator,” 2018. [Online]. Available:

https://apps.sentinel-hub.com/configurator/. [Accessed 1 May 2018].

54

[54] J. Fein, “PyGeoTools GitHub Repository,” 2013. [Online]. Available:

https://github.com/jfein/PyGeoTools. [Accessed 1 May 2018].

[55] J. P. Matuschek, “Finding Points Within a Distance of a Latitude/Longitude Using

Bounding Coordinates,” 2010. [Online]. Available:

http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates. [Accessed 1

May 2018].

[56] K. Stefan, Artist, a Mercator projection map with Tissot's indicatrices. [Art]. 2004.

[57] Wikipedia, “Great-circle distance,” [Online]. Available:

https://en.wikipedia.org/wiki/Great-circle_distance. [Accessed 1 May 2018].

[58] J. Braaten, W. B Cohen and Z. Tang, “Automated cloud and cloud shadow

identification in Landsat MSS imagery for temperate ecosystems,” Remote

Sensing of Environment, pp. 128-138, 2015.

[59] P. Helber, B. Bischke, A. Dengel and D. Borth, “EuroSAT: A Novel Dataset and

Deep Learning Benchmark,” 2017.

[60] Development Seed, “Label Maker GitHub Repository,” 2018. [Online]. Available:

https://github.com/developmentseed/label-maker. [Accessed 1 May 2018].

[61] Kaggle, “Understanding the Amazon from Spaze 1st place interview,” 17 October

2017. [Online]. Available: http://blog.kaggle.com/2017/10/17/planet-

understanding-the-amazon-from-space-1st-place-winners-interview/. [Accessed

1 May 2018].

[62] R. Minetto, M. P. Segundo and S. Sarkar, “Hydra: an Ensemble of Convolutional

Neural Networks for Geospatial Land Classification,” 2018.

[63] ethereon, “Netscope Resnet50 architecture visualisation,” 2018. [Online].

Available: http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006.

[Accessed 1 May 2018].

[64] Amazon Web Services, “AWS Instance Types,” 2018. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/. [Accessed 1 May 2018].

[65] Amazon Web Services, “P2 Instances,” [Online]. Available:

https://aws.amazon.com/ec2/instance-types/p2/. [Accessed 1 May 2018].

[66] Amazon Web Services, “AWS Command Line Interface,” 2018. [Online]. Available:

https://aws.amazon.com/cli/. [Accessed 1 May 2018].

[67] Google, “Earth Engine Classification,” 2018. [Online]. Available:

https://developers.google.com/earth-engine/classification. [Accessed 1 May

2018].

55

[68] J. Stephenson, “Google Earth Engine CART algorithm script,” [Online]. Available:

https://code.earthengine.google.com/ef76eeb57f620188297cd3a1c0695d7d.

[Accessed 1 May 2018].

[69] DigitalGlobe, “gbdxtools GitHub Repository,” 2018. [Online]. Available:

https://github.com/DigitalGlobe/gbdxtools. [Accessed 1 May 2018].

[70] DIUx, “xView Dataset,” 2018. [Online]. Available: http://xviewdataset.org/.

[Accessed 2018 1 March].

[71] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, “SSD:

Single Shot MultiBox Detector,” 2016.

[72] DIUx, “xView baseline models GitHub Repository,” 2018. [Online]. Available:

https://github.com/DIUx-xView/baseline. [Accessed 1 May 2018].

[73] Mapbox, “Mapbox Satellite,” 2018. [Online]. Available:

https://www.mapbox.com/maps/satellite/. [Accessed 1 May 2018].

[74] OpenStreetMap, “OSM Lab OSM QA Tiles,” 2018. [Online]. Available:

https://osmlab.github.io/osm-qa-tiles/. [Accessed 1 May 2018].

[75] OpenStreetMap, “OSM Zoom levels,” 2018. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Zoom_levels. [Accessed 1 May 2018].

[76] DigitalGlobe, “DigitalGlobe Blog - Global Basemap,” 12 July 2011. [Online].

Available: http://blog.digitalglobe.com/tag/global-basemap/. [Accessed 1 May

2018].

[77] OpenStreetMap, “OSM Features,” 2017. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Map_Features . [Accessed 1 May 2018].

[78] Mapbox, “Mapboz Style Specification - Other filter,” 2018. [Online]. Available:

https://www.mapbox.com/mapbox-gl-js/style-spec/#other-filter. [Accessed 1

May 2018].

[79] OpenStreetMap, “OSM wiki Highways definition,” 2018. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Highways. [Accessed 1 May 2018].

[80] OpenStreetMap, “OSM Contributors,” 2018. [Online]. Available:

https://wiki.openstreetmap.org/wiki/Contributors. [Accessed 1 May 2018].

[81] P. Henderson and V. Ferrari, “End-to-End Training of Object Class Detectors for

Mean Average Precision,” Lecture Notes in Computer Science, vol. 10115, 2016.

[82] Space Applications Catapult, “The Satellite Applications Catapult,” 2018. [Online].

Available: https://sa.catapult.org.uk/. [Accessed 1 May 2018].

56

11 Appendices

11.1 List of Acronyms
AOI Area-of-interest
AWS Amazon Web Services
CART Classification and Regression Tree
CNN Convolutional Neural Network
CRS Coordinate Reference System
DIUx Defense Innovation Unit Experimental
EC2 Elastic Cloud Compute
EO Earth Observation
ESA European Space Agency
GBDX Geo Big Data Platform
GEE Google Earth Engine
mAP mean Average Precision
MSI Multispectral Instrument
NASA National Aeronautics and Space Administration
NIR Near-infrared
OGC Open Geospatial Consortium
OLI Operational Land Imager
OSM QA OpenStreetMap Quality Assurance
S3 Simple cloud Storage Service
SSD Single-Shot Multibox Detector
SWIR Short-wave Infrared
TIRS Thermal Infrared Sensor
TOA Top-of-Atmosphere
UI User Interface
WCS Web Coverage Service
WGS84 World Geodetic System 1984
WKT Well-known text
WMS Web Map Service

11.2 Glossary

Polar-orbit An orbit in which a satellite passes above both poles of the body

being orbited on each revolution.

TOA reflectance The measure of light which reflects off the planet at the point of

the (satellite) sensor without atmospheric correction.

Swath width The width of the area being imaged on the surface by a

(satellite) sensor.
Near-infrared A term referring to the spectral region of infrared light with

wavelengths near to that of visible light
Short-wave infrared A term referring to the spectral region of infrared light with a

wavelength range immediately following that of near-infrared.

57

11.3 De-scoped Functionality and Future Improvements
This section provides both the de-scoped functionality and a sample of suggested future

improvements for the project tool.

11.3.1 De-scoped functionality

11.3.1.1 Enhanced UI

Due to time constraints a light-weight UI was built using the Folium Python library in

which the layers were displayed using a feature layer panel. The original intention was

to have slider functionality for comparing the first and second periods at Stage One. Due

to the limitations of the Folium library this requirement was de-scoped.

11.3.1.2 Specific focus on developments in the South China Sea

Although the project was initially inspired by the opportunity to detect change in

disputed territories of the South China Sea it was found that the majority of change in

these regions had taken place before the time period that the relatively recent Sentinel-

2 Satellites became active. There continues to be activity in this region, and so the tool

could still prove useful for this application in future, and including a longer-running

satellite imagery source such as Landsat 8 could expand this analysis historically.

11.3.1.3 Fine-tuning the CNNs

Training a Neural Network often involves an iterative trial-and-error approach, in which

various parameters such as ‘learning rate’ and ‘decay’ are tweaked to find the optimal

result. Due to time constraints only a selection of Neural Network training parameter

variations were tested, falling short of the precise adjustments required to validate the

use of the term ‘fine-tuning’.

11.3.2 Future improvements

11.3.2.1 User specified ‘change of interest’ type

The main focus of the tool is to identify where there has been a change from

rural/natural land cover to urban/man made. By applying algorithms trained to identify

alternative classes the tool could be enhanced with the option to detect other types of

change, for example deforestation.

11.3.2.2 Additional satellite imagery data sources

Where low-resolution Sentinel-2 imagery cloud cover is too high, or imagery does not

exist for a certain timeframe, other imagery data sources could be used such as Landsat-

8 data. A similar approach could be taken for high-resolution imagery, whereby another

commercial imagery provider such as Planet Labs could be queried for available imagery

where the DigitalGlobe retrievals are not successful. Both enhancements would

necessitate retraining the algorithms applied on the data types and resolutions that

these imagery sources provide.

The Worldview-4 Satellite imagery data is not available at present, but in future

including this source would also enhance the likelihood of a successful DigitalGlobe

server retrieval. With premium account level permissions and an extended Use Case the

functionality could also be introduced to order DigitalGlobe ‘acquisition’ products as

well.

58

11.3.2.3 Algorithm performance improvements

Due to the rapidly growing nature of the satellite industry there are new labelled data

sources are becoming available at an increasing rate. In future it is highly likely that low-

resolution labelled imagery will be available that is suitable for the purposes of the tool.

In the interim period the manual method applied to label the imagery acquired from

label-maker could be expanded upon to improve the performance of the Stage One

CNN.

The winning strategies from the current xView challenge, once released, could be

adapted to fine-tune the Stage Two CNN for greater object detection accuracy.

The CART algorithm was trained on an imagery mosaic produced using a function in GEE

to minimise cloud clover that as a consequence also maximised the chance of the image

pixels being within a cloud shadow. An improved approach could be devised to produce

a cloud free mosaic in GEE using another method, or alternatively data could be labelled

within the Python environment directly from Sentinel Hub, which would enable more

powerful methods such as random forests to be applied.

11.3.2.4 Additional UI and Graphical Display improvements

Displaying the prediction confidence level next to the class label within the bounding

box of detected objects would allow the user to make a more informed decision on what

level to set the confidence threshold at.

A limitation of the Folium library is that it can only pass data from Python to leaflet.js

and not vice-versa, and so auto-populating the latitude and longitude selections based

on map interactivity was not possible. In future a different library could be used which

offers this functionality.

11.4 User set-up manual
To access satellite imagery using the project tool the user must first sign up for accounts

at Sentinel Hub [47] and DigitalGlobe [26].

In order to run the tool certain library dependencies must be conformed with, and so

within the folder a Virtual Environment file named ‘projectEnvironment.yml’ is stored.

With Conda installed the user should then run the following from the command line

with the project folder set as the working directory:

$ conda env create -f projectEnvironment.yml
$ source activate projEnv
$ jupyter notebook

This will activate the Virtual Environment and open a Jupyter Notebook server instance

within the default browser.

Next the user should open the ‘Tool.ipynb’ notebook file, enter their Sentinel Hub and

DigitalGlobe credentials and run the code. The UI will be displayed and the tool is now

initialised and ready to use.

59

11.5 Implementation process for building a training data set using

label-maker (additional detail for section 7.4.2)
The following section describes the implementation process of building a training data

set for the Stage One CNN using label-maker from Development Seed [60].

The label-maker tool downloads pre-processed satellite imagery tiles from Mapbox [73]

and label information from OpenStreetMap Quality Assurance (OSM QA) tiles [74]. The

process of utilising this tool went through several iterations, with each intending to

make improvements to the training data acquired and, as a result, the accuracy of the

Neural Network being trained with the data. The key implementation details for building

the data set are detailed below:

Zoom level - When requesting the imagery through label-maker the zoom level must be
specified as an integer between 0 and 19, with larger zoom levels representing higher-
resolution imagery. Zoom level 14 represents a spatial resolution of 9.547 m/pixel at the
equator [75], which is roughly equivalent to Sentinel-2 imagery which has a maximum
resolution of 10 m/pixel. At this zoom level Mapbox provides satellite imagery from a
combination of open and proprietary sources including DigitalGlobe’s Global Basemap
[76]. Section 11.6.1 provides a comparison of imagery at this zoom level with that of
Sentinel-2.

Country and bounding_box – The label-maker tool requires both country and bounding
box for which to request relevant imagery and OSM QA tiles. To improve the training
data I requested and combined imagery from multiple locations and countries in the
proximity of the South China Sea, illustrated in Figure 32.

Figure 32 - Map highlighting countries (blue) for which satellite imagery was sampled using the label-maker
tool. Philippines, Indonesia (Lombok), Indonesia (Borneo), Malaysia, Vietnam, Brunei, China, Taiwan

Classes – The label-maker tool allows classes to be defined as a combination of OSM
features [77] using the ‘Mapbox GL Filters’ [78] syntax. The purpose of the tool is to
identify evidence of man-made objects or human change, as such a key challenge was
identifying a combination of class features that didn’t result in a dataset where all land
cover tiles contained these features.

60

Figure 33 illustrates the land coverage of various combinations of OSM features for an
area in the Philippines:

• The red tiles show areas for which the representative OSM tiles contain the
'building' label.

• This expands to the purple tiles too when also including tiles where any of:
'man_made', 'military', 'aerialway', or 'aeroway' features are present, or if
landuse is any of 'allotments', 'brownfield', 'cemetery', 'commercial',
'construction', 'depot', 'farmland', 'farmyard', 'garages',
'greenhouse_horticulture', 'industrial', 'landfill', 'military', 'orchard',
'plant_nursery', 'port', 'quarry', 'railway', 'recreation_ground', 'religious',
'residential', 'retail', 'village_green', 'vineyard'.

• This expands further to include the orange tiles simply with the addition of
'highways', which is defined by OSM as ‘... any road, route, way, or thoroughfare
on land...’ [79]

Figure 33 – Illustration of feature coverage within OSM QA tiles

It was decided following this testing that 'highways' are too prolific in OSM tiles and can

be found within almost all land tiles at zoom level 14. A balance of covered/non-covered

land tiles, whilst also including a range of man-made objects, was achieved by excluding

the tiles only containing ‘highways’ from the list above. The resulting class feature

coverage is illustrated by the red and purple tiles in Figure 33. The final syntax used for

the classes is shown below:

 "classes": [{ "name": "human construction", "filter": ["any", ["has", "man_made"], ["has", "military"], ["has", "building"],

["has", "aerialway"], ["has", "aeroway"], ["in", "landuse", "allotments", "brownfield", "cemetery", "commercial",

"construction", "depot", "farmland", "farmyard", "garages", "greenhouse_horticulture", "industrial", "landfill", "military",

"orchard", "plant_nursery", "port", "quarry", "railway", "recreation_ground", "religious", "residential", "retail",

"village_green", "vineyard"]] }],

61

Despite carefully designed class syntax and a variety of countries/locations the CNN was

performing poorly when applied in testing. An approach taken to improve upon this was

to manually cleanse the data of poor-quality images, examples of which are shown in

Figure 34.

The images were visually reviewed in .jpg format, with Table 8 showing resulting impact

this had on the size of the dataset. The images were then converted to Numpy arrays

and georeferenced with OSM QA tiles for labelling. This was a similar strategy to that

used by the team producing the EuroSAT dataset [59].

Table 8 - Impact on size of training data of imagery review

Country Image count pre-review Image count post-review % reduction

Philippines 3,471 1,801 48%

Indonesia (Lombok) 2,008 1,334 34%

Indonesia (Borneo) 1,208 616 49%

Malaysia 830 300 64%

Vietnam 1,150 995 13%

Brunei 554 497 10%

China 1,912 1,207 37%

Taiwan 1,150 995 13%

Total 12,283 7,745 37%

Training the CNN with the imagery cleansed as above led to only a small improvement in

the CNN performance. The next point of investigation was the OSM QA tile labelling,

unfortunately this labelling proved to be highly unreliable. There are two causes for this;

firstly, OSM label quality is entirely dependent on a range of contributors, from

organisations and governments to individual volunteers, to provide data and keep it up

to date and accurate [80]. Secondly, an inspection revealed a software bug wherein at

country boundaries the label-maker tool doesn’t download certain OSM QA tiles, as

illustrated by Figure 35 which shows the OSM tile coverage is missing in the image on

the right near to the border between Singapore and Malaysia. With inaccurate or

missing OSM QA tile data the label-maker tool doesn’t create the correct class labels for

the data set.

Figure 34 - Examples of poor quality label-maker imagery

62

Figure 35 – Illustration of full OSM QA tile coverage (left) and missing OSM tile coverage (right)

As a result of this finding I was forced to re-label the data by hand. This was a time-

intensive process and with significant portions of the project outstanding I could only re-

label a subset of the cleansed imagery data.

11.6 Additional testing and analysis
The following section provides additional relevant testing and analysis to compliment

sections 7 and 8.

11.6.1 Imagery comparison between label-maker and Sentinel-2
An imagery comparison was performed over the same geolocation to confirm that the

zoom level of labelled imagery acquired using the label-maker tool for training purposes

was at the correct resolution and detail to that of Sentinel-2. Figure 36 illustrates the

results of this testing. The image on the left from label-maker is too detailed at zoom

level 15, whereas the central image from label-maker at zoom level 14 is a close match

to the Sentinel-2 acquisition on the right.

Figure 36 - Left to right: label-maker acquisiton at Zoom 15, label-maker acquisition at Zoom 14, Sentinel-2
acquisition from Sentinel Hub

11.6.2 Stage One Resnet50 Classification CNN
One of the indications that the label-maker data was not suitable for the purposes of the

project tool was the output of training attempts. Figure 37 illustrates the performance

of the model at each epoch when being trained on the data which had been cleansed of

poor-quality imagery, but before the OSM QA tile labelling accuracy had been checked.

Despite the loss and accuracy rates improving for the training set this pattern was not

reflected in the validation set, prompting the investigation that identified missing OSM

QA tiles as detailed in 7.4.2.

63

Applying this CNN to the imagery retrieved from Sentinel Hub had unexpected results,

as illustrated by Figure 38 in which the confidence of ‘man made’ is 0.96 in the image on

the left and 0.40 in the image on the right.

Figure 38 - Illustration of unexpected results when applying an earlier iteration of the Stage One CNN

Despite the manually re-labelled data set being significantly smaller, a stronger

correlation between training and validation set loss/accuracy was observed, illustrated

in Figure 39.

Figure 37 - Loss and accuracy levels at each epoch when training the Resnet50 CNN with cleansed but poorly labelled
imagery. The loss function is categorical cross-entropy.

64

Figure 39 - Loss and accuracy levels at each epoch when training the Resnet50 CNN with manually re-
labelled imagery. The loss function is categorical cross-entropy.

11.6.3 Second Stage SSD Object Detection CNN
As part of the DIUx xView Challenge the weights for three benchmark CNN models were

released. Each model was trained with the DIUx xView dataset on 4 GPUs for 7 days

using interpolated mean Average Precision (mAP) [81] as their backpropagation loss

function. The total mAP score across all classes that resulted from this training is

provided in Table 9 below.

Table 9 - mAP score across all classes of 'Vanilla', 'Multires', and 'Aug' benchmark CNNs

Vanilla Multires Aug

Total mAP 0.1456 0.2590 0.1549

The ‘Multires’ benchmark model showed the best performance in testing and has been

adapted and implemented at Stage Two in the project tool. Figure 40 shows an example

of the bounding box and class labels output when running Stage Two with the AOI over

an airport in Vietnam. It was found that small changes to the confidence threshold had a

significant impact on the detections that were displayed, due to this a slider for this

parameter was provided in the UI.

Figure 40 - Bounding box and class label output from Object Detection CNN

65

11.7 Program code and algorithms

11.7.1 Google Earth Engine CART Algorithm script

1. // Adapted from code segments reviewed at the SAC [82]
2. // First create a composite of Sentinel-2 imagery
3. var s2collection = ee.ImageCollection('COPERNICUS/S2')
4. .filterDate('2017-05-01', '2018-05-01')
5. var S2composite = s2collection.min(); // uses .min() function to minimise cloud

cover
6. // Select the red, green and blue bands which will allow for visual identificati

on of land-use.
7. Map.addLayer(S2composite, {
8. bands: ['B4', 'B3', 'B2'],
9. gain: '0.1, 0.1, 0.1'
10. }, 'S2 Min Composite');
11.
12. // Merge the three geometry layers created by hand into a single FeatureCollecti

on.
13. var newfc = urban_manmade.merge(vegetation_natural).merge(water);
14.
15.
16. // Based on testing the following bands have been used for the classification.
17. var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8'];
18. // The name of the property on the points storing the class label.
19. var classProperty = 'landcover';
20.
21. // Create a set of training data.
22. var S2training = S2composite.select(bands).sampleRegions({
23. collection: newfc,
24. properties: [classProperty],
25. scale: 30
26. });
27.
28. // Train the CART classifier.
29. var S2classifier = ee.Classifier.cart().train({
30. features: S2training,
31. classProperty: classProperty,
32. });
33.
34. // Print the architecture of the CART for transfer to Python environment
35. print('CART, explained', S2classifier.explain());
36.
37.
38. // Classify the composite to review accuracy on global scale.
39. var S2classified = S2composite.classify(S2classifier);
40. Map.centerObject(newfc);
41. Map.addLayer(S2classified, {
42. min: 0,
43. max: 2,
44. palette: ['red', 'green', 'blue']
45. }, 'CART estimate');
46.
47. // Test accuracy of CART model
48. var withRandom = S2training.randomColumn('random');
49.
50. // Split the data in to training and testing sets
51. var split = 0.7; // 70% training, 30% testing.
52. var trainingPartition = withRandom.filter(ee.Filter.lt('random', split));
53. var testingPartition = withRandom.filter(ee.Filter.gte('random', split));
54.
55. // Train the classifier with 70% of the data.
56. var S2trainedClassifier = ee.Classifier.gmoMaxEnt().train({
57. features: trainingPartition,
58. classProperty: classProperty,

66

59. inputProperties: bands
60. });
61.
62. // Classify the test set.
63. var S2test = testingPartition.classify(S2trainedClassifier);
64.
65. // Print the confusion matrix.
66. var S2confusionMatrix = S2test.errorMatrix(classProperty, 'classification');
67. print('Confusion Matrix', S2confusionMatrix);

67

11.7.2 Python libraries
Table 10 provides a comprehensive list of all Python libraries that were required for the

project in <library>=<version> format.

Table 10 - Python libraries and versions required for project tool

absl-py=0.4.0 gast=0.2.0 libspatialite=4.3.0a pthread-stubs=0.4 tk=8.6.8

affine=2.2.1 gdal=2.2.4 libssh2=1.8.0 ptyprocess=0.6.0 toolz=0.9.0

altair=2.2.2 geos=3.6.2 libstdcxx-ng=7.2.0 py=1.5.4 tornado=5.1

appdirs=1.4.3 geotiff=1.4.2 libtiff=4.0.9 pyasn1=0.4.4 tqdm=4.24.0

asn1crypto=0.24.0 gettext=0.19.8.1 libuuid=2.32.1 pyasn1-modules=0.2.1 traitlets=4.3.2

astor=0.7.1 giflib=5.1.4 libxcb=1.13 pycparser=2.18 typing=3.6.4

atomicwrites=1.1.5 glib=2.55.0 libxml2=2.9.8 pydot=1.2.4 urllib3=1.23

attrs=18.1.0 gmp=6.1.2 locket=0.2.0 pygments=2.2.0 utm=0.4.2

automat=0.7.0 gst-plugins-base=1.12.5 mako=1.0.7 pygpu=0.7.6 vcrpy=1.13.0

backcall=0.1.0 gstreamer=1.12.5 markdown=2.6.11 pyhamcrest=1.9.0 vincent=0.4.4

basemap=1.1.0 h5py=2.8.0 markupsafe=1.0 pyjwt=1.6.4 wcwidth=0.1.7

bleach=2.1.3 hdf4=4.2.13 matplotlib=2.2.3 pyopenssl=18.0.0 webencodings=0.5

blinker=1.4 hdf5=1.10.2 mercantile=1.0.4 pyparsing=2.2.0 werkzeug=0.14.1

bokeh=0.13.0 heapdict=1.0.0 mistune=0.8.3 pyproj=1.9.5.1 wheel=0.31.1

boost-cpp=1.67.0 html5lib=1.0.1 mkl_fft=1.0.5 pyqt=5.6.0 widgetsnbextension=3.4.0

boto3=1.7.77 hyperlink=17.3.1 mkl_random=1.0.1 pyshp=1.2.12 wrapt=1.10.11

botocore=1.10.77 icu=58.2 more-itertools=4.2.0 pysocks=1.6.8 xerces-c=3.2.0

branca=0.3.0 idna=2.7 msgpack-python=0.5.6 pytest=3.7.1 xorg-kbproto=1.0.7

bumpversion=0.5.3 imageio=2.3.0 nb_conda=2.2.1 pytest-runner=4.2 xorg-libice=1.0.9

bzip2=1.0.6 incremental=17.5.0 nb_conda_kernels=2.1.1 python=3.5.5 xorg-libsm=1.2.2

ca-certificates=2018.4.16 ipykernel=4.8.2 nbconvert=5.3.1 python-dateutil=2.7.3 xorg-libx11=1.6.5

cachetools=2.1.0 ipython=6.5.0 nbformat=4.4.0 pytz=2018.5 xorg-libxau=1.0.8

cairo=1.14.12 ipython_genutils=0.2.0 ncurses=6.1 pywavelets=0.5.2 xorg-libxdmcp=1.1.2

certifi=2018.8.13 ipywidgets=7.4.0 networkx=2.1 pyyaml=3.12 xorg-libxext=1.3.3

cffi=1.11.5 jedi=0.12.1 notebook=5.6.0 pyzmq=17.1.2 xorg-libxrender=0.9.10

chardet=3.0.4 jinja2=2.10 oauthlib=2.1.0 qt=5.6.2 xorg-renderproto=0.11.1

click=6.7 jmespath=0.9.3 olefile=0.45.1 rasterio=1.0.3 xorg-xextproto=7.3.0

click-plugins=1.0.3 jpeg=9c openjpeg=2.3.0 readline=7.0 xorg-xproto=7.0.31

cligj=0.4.0 json-c=0.12.1 openssl=1.0.2o requests=2.19.1 xz=5.2.4

cloudpickle=0.5.3 jsonschema=2.6.0 packaging=17.1 requests-futures=0.9.7 yaml=0.1.7

constantly=15.1.0 jupyter_client=5.2.3 pandas=0.23.4 requests-oauthlib=1.0.0 zeromq=4.2.5

cryptography=2.3.1 jupyter_core=4.4.0 pandoc=2.2.2 s3transfer=0.1.13 zict=0.1.3

cryptography-vectors=2.3.1 kealib=1.4.9 pandocfilters=1.4.2 scikit-image=0.14.0 zlib=1.2.11

curl=7.61.0 keras=2.1.6 parso=0.3.1 send2trash=1.5.0 zope.interface=4.5.0

cycler=0.10.0 kiwisolver=1.0.1 partd=0.3.8 service_identity=17.0.0 grpcio=1.12.1

cytoolz=0.9.0.1 krb5=1.14.6 pathlib2=2.3.2 setuptools=40.0.0 intel-openmp=2018.0.3

dask=0.18.2 libffi=3.2.1 pcre=8.41 shapely=1.6.4 libcurl=7.61.0

dask-core=0.18.2 libgcc=7.2.0 pexpect=4.6.0 simplegeneric=0.8.1 mkl=2018.0.3

dbus=1.13.0 libgcc-ng=7.2.0 pickleshare=0.7.4 sip=4.18 numpy=1.14.2

decorator=4.3.0 libgdal=2.2.4 pillow=5.2.0 six=1.11.0 pycurl=7.43.0.2

distributed=1.22.1 libgfortran=3.0.0 pip=18.0 snuggs=1.4.1 scipy=1.1.0

docutils=0.14 libgfortran-ng=7.2.0 pixman=0.34.0 sortedcontainers=2.0.4 twisted=18.7.0

entrypoints=0.2.3 libgpuarray=0.7.6 pluggy=0.7.1 sqlite=3.24.0 configparser=3.5.0

ephem=3.7.6.0 libiconv=1.15 poppler=0.61.1 tblib=1.3.2 gbdx-auth=0.4.0

expat=2.2.5 libkml=1.3.0 poppler-data=0.4.9 tensorboard=1.9.0 gbdxtools=0.15.11

folium=0.6.0 libnetcdf=4.6.1 proj4=4.9.3 tensorflow=1.9.0 msgpack=0.5.6

fontconfig=2.13.0 libpng=1.6.35 prometheus_client=0.3.0 termcolor=1.1.0 opencv-python=3.4.2.17

freetype=2.9.1 libpq=9.6.3 prompt_toolkit=1.0.15 terminado=0.8.1 sentinelhub=2.4.1

freexl=1.0.5 libprotobuf=3.6.0 protobuf=3.6.0 testpath=0.3.1 tifffile=0.15.1

future=0.16.0 libsodium=1.0.16 psutil=5.4.7 theano=1.0.2

68

11.7.3 Python methods and functions
def bbox_split_grid(user_dist_km, km_per_tile):

 """

 Calculate the number of whole tiles required to split the user-provided distance

 in to a square grid

 Args:

 user_dist_km : distance from point on map to be retrieved and analysed

 km_per_tile : width/height of tiles to split grid by

 Outputs:

 An integer representing the width/height in whole tiles to split the calculated area by

 """

 bbox_split_xy = math.ceil(user_dist_km / (km_per_tile / 2))

 return(bbox_split_xy)

def user_dist_km_upper(user_dist_km, km_per_tile):

 """

 Calculate width/height in km of total area to be covered based on number of tiles in grid

 Args:

 user_dist_km : distance from point on map to be retrieved and analysed

 km_per_tile : width/height of tiles to split grid by

 Outputs:

 A float representing the width/height in km of total area to be retrieved

 """

 km_upper = bbox_split_grid(user_dist_km, km_per_tile) * (km_per_tile / 2)

 return(km_upper)

def user_large_bbox(user_Lon_deg, user_Lat_deg, user_dist_km, km_per_tile):

 """

 Calculate Bounding Box coordinates of total area to be covered based on user input

 Args:

 user_Lon_deg : User provided longitude coordinate of AOI

 user_Lat_deg : User provided latitude coordinate of AOI

 user_dist_km : distance from point on map to be retrieved and analysed

 km_per_tile : width/height of tiles to split grid by

 Outputs:

 The latitude and longitude coordinates of the lower left and upper right corners of the

total area

 to be retrieved

 """

 user_loc = GeoLocation.from_degrees(

 user_Lat_deg, user_Lon_deg) # Note: LAT,LON format not LON,LAT format

 user_SW_loc, user_NE_loc = user_loc.bounding_locations(

 user_dist_km_upper(user_dist_km, km_per_tile))

 return user_SW_loc, user_NE_loc

def user_sub_bbox_coords_v2(

 user_Lon_deg,

 user_Lat_deg,

 user_dist_km,

 km_per_tile):

 """

 Calculate the Bounding Box coordinates for each tile in total area to be retrieved

 Args:

 user_Lon_deg : User provided longitude coordinate of AOI

 user_Lat_deg : User provided latitude coordinate of AOI

 user_dist_km : distance from point on map to be retrieved and analysed

 km_per_tile : width/height of tiles to split grid by

 Outputs:

 A list containing the latitude and longitude coordinates of the lower left and

 upper right

 corners of each tile in total area to be retrieved

 A list containing the grid position of each tile

69

 """

 # First use earlier function to return larger bbox coords

 user_SW_loc, user_NE_loc = user_large_bbox(

 user_Lon_deg, user_Lat_deg, user_dist_km, km_per_tile)

 # With larger bbox geo coords calculated we can now split.

 # First create polygon to feed to sentinel hub BBoxSplitter

 # method/function:

 user_polyg = asPolygon([[user_SW_loc.deg_lon,

 user_SW_loc.deg_lat],

 [user_SW_loc.deg_lon,

 user_NE_loc.deg_lat],

 [user_NE_loc.deg_lon,

 user_NE_loc.deg_lat],

 [user_NE_loc.deg_lon,

 user_SW_loc.deg_lat]])

 # With polygon created as input to splitter method, feed in with number of

 # sub_bboxes calculated by bbox_split_grid:

 user_bbox_splitter = BBoxSplitter(

 [user_polyg], CRS.WGS84, (bbox_split_grid(

 user_dist_km, km_per_tile), bbox_split_grid(

 user_dist_km, km_per_tile)))

 # List of BBox created suitable for sentinel hub requests

 user_sub_bbox_list = user_bbox_splitter.get_bbox_list()

 # Information regarding grid position of each bounding box and original

 # large bbox

 user_sub_info_list = user_bbox_splitter.get_info_list()

 return user_sub_bbox_list, user_sub_info_list

def sentinel_bands_and_dates_req(sub_bbox, user_date, INSTANCE_ID):

 """

 Retrieves imagery for a given Bounding Box and date range using the sentinel hub

 WCSRequest method

 Args:

 sub_bbox : bounding box coordinates of tile for which imagery is to be requested

 user_date : the date range of imagery capture required

 INSTANCE_ID : credentials for accessing Sentinel Hub servers

 Outputs:

 A list containing all imagery data available for given parameters

 A list containing the dates of capture for each image

 """

 wcs_all_bands_request = WcsRequest(layer='BANDS-S2-L1C', # Sentinel 2 imagery source with

 all available bands (B01,B02,B03,B04,B05,

 B06,B07,B08,B8A,B09,B10,B11,B12)

 bbox=sub_bbox, # Which bounding box

 time=user_date, # When imagery requested

 resx='10m', resy='10m', # Metres per pixel, only valid

 for WCS requests

 instance_id=INSTANCE_ID,

 # Instance ID created during set-up and

 # configuration and set above

 image_format=MimeType.TIFF_d32f,

 # TIFF_d32f, since Sentinel-2’s 13 bands

 # can not be held in a png/jpg image.

 # By default logo in bottom left, this

 # removes that

 custom_url_params={

 CustomUrlParam.SHOWLOGO: False}

)

 wcs_all_bands_tiff = wcs_all_bands_request.get_data()

 wcs_all_bands_dates = wcs_all_bands_request.get_dates()

 return(wcs_all_bands_tiff, wcs_all_bands_dates)

def clip(a):

 """

 Limits the value of input to range (0,1)

 Args:

70

 a : value to be clipped to range (0,1)

 Outputs:

 A float in range (0,1)

 """

 if a >= 0:

 if a <= 1:

 return a

 else:

 return 1

 else:

 return 0

def image_cloudMask_cloudScore_date(

 wcs_all_bands_single_tiff,

 wcs_all_bands_single_date):

 """

 Identifies cloud coverage and calculates two types of cloud mask and cloud score

 Args:

 wcs_all_bands_single_tiff : an individual image

 wcs_all_bands_single_date : the date of capture of the image provided

 Outputs:

 A dictionary object containing the original image, both types of cloud mask

 and cloud score, the date of capture of the image

 """

 # adaptation of algorithm proposed by [Braaten, Cohen, Yang, 2015]

 wcs_tiff_cloud = np.zeros(

 shape=wcs_all_bands_single_tiff[:, :, [3, 2, 1]].shape)

 wcs_tiff_cloud_basic = np.zeros(

 shape=wcs_all_bands_single_tiff[:, :, [3, 2, 1]].shape)

 cc = 0

 cc_basic = 0

 for i in range(len(wcs_tiff_cloud)):

 for j in range(len(wcs_tiff_cloud[i])):

 # calculate whether heavy or medium cloud for each pixel:

 bRatio = (wcs_all_bands_single_tiff[i]

 [j][2] - 0.175) / (0.39 - 0.175)

 NGDR = (wcs_all_bands_single_tiff[i][j][2] - wcs_all_bands_single_tiff[i][j][3]) / (

 wcs_all_bands_single_tiff[i][j][2] + wcs_all_bands_single_tiff[i][j][3])

 if bRatio > 1:

 v = 0.5 * (bRatio - 1)

 wcs_tiff_cloud[i][j][0] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][3])

 wcs_tiff_cloud[i][j][1] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][2])

 wcs_tiff_cloud[i][j][2] = (

 0.5 * clip(wcs_all_bands_single_tiff[i][j][1])) + v

 wcs_tiff_cloud_basic[i][j][0] = (

 0.5 * clip(wcs_all_bands_single_tiff[i][j][1])) + v

 cc += wcs_tiff_cloud[i][j][2]

 cc_basic += 1

 elif bRatio > 0 and NGDR > 0:

 v = 5 * math.sqrt(bRatio * NGDR)

 wcs_tiff_cloud[i][j][0] = (

 0.5 * clip(wcs_all_bands_single_tiff[i][j][3])) + v

 wcs_tiff_cloud[i][j][1] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][2])

 wcs_tiff_cloud[i][j][2] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][1])

 wcs_tiff_cloud_basic[i][j][0] = (

 0.5 * clip(wcs_all_bands_single_tiff[i][j][3])) + v

 cc += wcs_tiff_cloud[i][j][0]

 cc_basic += wcs_tiff_cloud[i][j][0]

 else:

 wcs_tiff_cloud[i][j][0] = 0.5 * \

71

 clip(wcs_all_bands_single_tiff[i][j][3])

 wcs_tiff_cloud[i][j][1] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][2])

 wcs_tiff_cloud[i][j][2] = 0.5 * \

 clip(wcs_all_bands_single_tiff[i][j][1])

 img_dict = dict()

 img_dict['tiff'] = wcs_all_bands_single_tiff

 img_dict['cloud'] = wcs_tiff_cloud

 img_dict['cloud_basic'] = wcs_tiff_cloud_basic

 img_dict['cc'] = cc / 65536

 img_dict['cc_basic'] = cc_basic / 65536

 img_dict['date'] = wcs_all_bands_single_date

 return img_dict

def best_image_cloud_dates_dict(wcs_all_bands_tiff, wcs_all_bands_dates):

 """

 For a range of images over multiple dates calculates cloud masks and cloud scores

 and returns image with lowest cloud score

 Args:

 wcs_all_bands_tiff : a list of images

 wcs_all_bands_dates : a list of the date of capture of the images provided

 Outputs:

 A dictionary object containing the lowest cloud cover image, cloud masks, cloud scores a

nd capture date

 """

 images_dict = dict()

 if len(wcs_all_bands_tiff) == 0:

 print("No imagery for selected dates")

 return

 for i in range(len(wcs_all_bands_tiff)):

 images_dict[i] = image_cloudMask_cloudScore_date(

 wcs_all_bands_tiff[i], wcs_all_bands_dates[i])

 # From images_dict apply a lamda function to select index of image with

 # lowest cloud:

 key_min = min(images_dict.keys(), key=(lambda k: images_dict[k]['cc']))

 return(images_dict[key_min])

def folium_bounds(sub_bbox):

 """

 Rearranges tile coordinates to appropriate Folium format for projection

 Args:

 sub_bbox : the bounding box coordinates to be rearranged

 Outputs:

 A list containing rearranged coordinates

 """

 low_left = sub_bbox.get_lower_left()

 up_right = sub_bbox.get_upper_right()

 fol_bound = [[low_left[1], low_left[0]], [up_right[1], up_right[0]]]

 return(fol_bound)

def landcover_cart(wcs_all_bands_single_tiff, cc):

 """

 Applies a CART algorithm pixel-wise to classify land cover in imagery

 Args:

 wcs_all_bands_single_tiff : an individual image

 cc : the cloud cover score for the image

 Outputs:

 A image in numpy array format representing the classification estimate

 """

 B2 = 1

 B3 = 2

 B4 = 3

 B5 = 4

 B6 = 5

 B8 = 7

72

 factor_t = 3.3

 im_mean = np.mean(wcs_all_bands_single_tiff[:, :, [

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]], axis=(0, 1, 2))

 mean_factor = ((im_mean * (1 - cc) * factor_t))

 wcs_tiff_CART = np.zeros(

 shape=wcs_all_bands_single_tiff[:, :, [3, 2, 1]].shape)

 for i in range(len(wcs_tiff_CART)):

 for j in range(len(wcs_tiff_CART[i])):

 if wcs_all_bands_single_tiff[i][j][B6] <= 0.385108 * mean_factor:

 if wcs_all_bands_single_tiff[i][j][B8] <= 0.304296 * \

 mean_factor:

 wcs_tiff_CART[i][j][2] = 1

 else:

 wcs_tiff_CART[i][j][0] = 1

 else:

 if wcs_all_bands_single_tiff[i][j][B2] <= 0.951 * mean_factor:

 if wcs_all_bands_single_tiff[i][j][B8] <= 0.76668 * \

 mean_factor:

 if wcs_all_bands_single_tiff[i][j][B2] <= 0.82584 * \

 mean_factor:

 wcs_tiff_CART[i][j][1] = 1

 else:

 wcs_tiff_CART[i][j][0] = 1

 else:

 if wcs_all_bands_single_tiff[i][j][B2] <= 0.917636 * \

 mean_factor:

 wcs_tiff_CART[i][j][1] = 1

 else:

 if wcs_all_bands_single_tiff[i][j][B5] <= 0.95164 * \

 mean_factor:

 if wcs_all_bands_single_tiff[i][j][B4] <= 0.52226 * \

 mean_factor:

 if wcs_all_bands_single_tiff[i][j][B2] <= 0.938008 * \

 mean_factor:

 wcs_tiff_CART[i][j][1] = 1

 else:

 wcs_tiff_CART[i][j][0] = 1

 else:

 wcs_tiff_CART[i][j][0] = 1

 else:

 wcs_tiff_CART[i][j][1] = 1

 else:

 if wcs_all_bands_single_tiff[i][j][B2] <= 1.007008 * \

 mean_factor:

 if wcs_all_bands_single_tiff[i][j][B3] <= 0.9032 * \

 mean_factor:

 wcs_tiff_CART[i][j][0] = 1

 else:

 wcs_tiff_CART[i][j][1] = 1

 else:

 wcs_tiff_CART[i][j][0] = 1

 return(wcs_tiff_CART)

def landcov_proportions(land_cover, cloud_before, cloud_after):

 """

 Calculates the proportion of each land cover type from a CART classification estimate for

 pixels which are cloud-free in both timeframes

 Args:

 land_cover : the CART classification of an individual image

 cloud_before : the cloud cover mask for an image from the first timeframe

 cloud_after : the cloud cover mask for an image from the first timeframe

73

 Outputs:

 A list containing the proportions of each landcover type

 """

 man_made = 0

 natural = 0

 water = 0

 tot = 0

 for i in range(len(land_cover)):

 for j in range(len(land_cover[i])):

 # only consider pixels without cloud in either before or after

 if cloud_before[i][j][0] == 0 and cloud_after[i][j][0] == 0:

 man_made += land_cover[i][j][0]

 natural += land_cover[i][j][1]

 water += land_cover[i][j][2]

 tot += 1

 if tot == 0: # Too much cloud

 return([0, 0, 0])

 return([man_made / tot, natural / tot, water / tot])

def polyline_bounds(sub_bbox):

 """

 Rearranges tile coordinates to appropriate format for polygon projection in Folium layer

 Args:

 sub_bbox : the bounding box coordinates to be rearranged

 Outputs:

 A list containing rearranged coordinates

 """

 low_left = sub_bbox.get_lower_left()

 up_right = sub_bbox.get_upper_right()

 poline_bound = [[low_left[1], low_left[0]], [up_right[1], low_left[0]], [

 up_right[1], up_right[0]], [low_left[1], up_right[0]], [low_left[1], low_left[0]]]

 return(poline_bound)

def process_predict_img(user_image):

 """

 Processes satellite image to correct size and format, CNN to make prediction

 Args:

 user_image : an RGB numpy array

 Outputs:

 CNN prediction in [a,b] format where a,b are in range (0,1) and a+b = 1.

 """

 if user_image.shape != (256, 256, 3):

 user_image = cv2.resize(user_image, dsize=(

 256, 256), interpolation=cv2.INTER_CUBIC)

 # normalize the image

 user_image = user_image.astype('float32')

 img_mean = np.mean(user_image, axis=(0, 1, 2))

 img_std = np.std(user_image, axis=(0, 1, 2))

 user_image -= img_mean

 user_image /= img_std

 # add a column to match expected shape

 test_img_exp = np.expand_dims(user_image, axis=0)

 # make prediction

 prediction = res50_model.predict(test_img_exp)

 return prediction[0]

def first_stage_map_layer_dicts(

 user_Lon_deg,

 user_Lat_deg,

 user_dist_km,

 km_per_tile,

 user_date_start,

 user_date_finish):

 """

 Combines methods to create dictionary objects for display in Folium map

 Args:

74

 user_Lon_deg : User provided longitude coordinate of AOI

 user_Lat_deg : User provided latitude coordinate of AOI

 user_dist_km : distance from point on map to be retrieved and analysed

 km_per_tile : width/height of tiles to split grid by

 user_date_start : the date range of imagery capture required for first period

 user_date_finish : the date range of imagery capture required for second period

 Outputs:

 A dictionary for each timeframe containing lowest cloud imagery and analysis

 A dictionary containing comparison analysis between both timeframes

 """

 # With functions above first create bbox_list:

 bbox_list, bbox_info = user_sub_bbox_coords_v2(

 user_Lon_deg, user_Lat_deg, user_dist_km, km_per_tile=2.56)

 # Run through bbox_list returning best image in each bbox based on cloud

 # coverage

 start_master_dict = dict()

 for i in range(len(bbox_list)):

 wcs_all_bands_tiff, wcs_all_bands_dates = sentinel_bands_and_dates_req(

 bbox_list[i], user_date_start, INSTANCE_ID)

 start_master_dict[i] = best_image_cloud_dates_dict(

 wcs_all_bands_tiff, wcs_all_bands_dates)

 start_master_dict[i]['land'] = landcover_cart(

 start_master_dict[i]['tiff'], start_master_dict[i]['cc'])

 start_master_dict[i]['fol_bounds'] = folium_bounds(bbox_list[i])

 finish_master_dict = dict()

 for i in range(len(bbox_list)):

 wcs_all_bands_tiff, wcs_all_bands_dates = sentinel_bands_and_dates_req(

 bbox_list[i], user_date_finish, INSTANCE_ID)

 finish_master_dict[i] = best_image_cloud_dates_dict(

 wcs_all_bands_tiff, wcs_all_bands_dates)

 finish_master_dict[i]['land'] = landcover_cart(

 finish_master_dict[i]['tiff'], finish_master_dict[i]['cc'])

 finish_master_dict[i]['fol_bounds'] = folium_bounds(bbox_list[i])

 # Calculates land cover proportions in the images only where cloud cover

 # isn't heavy in either before or after

 for i in range(len(bbox_list)):

 start_master_dict[i]['land_cov_prop'] = landcov_proportions(

 start_master_dict[i]['land'],

 finish_master_dict[i]['cloud_basic'],

 start_master_dict[i]['cloud_basic'])

 # print(start_master_dict[i]['land_cov_prop'])

 print("First Period imagery retrieval and analysis complete.")

 for i in range(len(bbox_list)):

 finish_master_dict[i]['land_cov_prop'] = landcov_proportions(

 finish_master_dict[i]['land'],

 finish_master_dict[i]['cloud_basic'],

 start_master_dict[i]['cloud_basic'])

 # print(finish_master_dict[i]['land_cov_prop'])

 print("Second Period imagery retrieval and analysis complete.")

 # A dictionary holding comparison analysis

 compare_dict = dict()

 # Loop below takes maximum proportional change across each land use type

 for i in range(len(bbox_list)):

 compare_dict[i] = dict() # set up dict for each image

 norm_dif = [0, 0, 0] # initialise list for proportions

 # for each land cover type calculate a proportional change

 for j in range(len(finish_master_dict[i]['land_cov_prop'])):

 # case when potential to divide by zero:

 if start_master_dict[i]['land_cov_prop'][j] == 0:

 norm_dif[j] = math.fabs(

 (finish_master_dict[i]['land_cov_prop'][j] -

 start_master_dict[i]['land_cov_prop'][j]))

 else:

 norm_dif[j] = math.fabs(

 (finish_master_dict[i]['land_cov_prop'][j] -

75

 start_master_dict[i]['land_cov_prop'][j]) /

 start_master_dict[i]['land_cov_prop'][j])

 # take the maximum land cover change across all types

 compare_dict[i]['land_cov_max_change'] = max(norm_dif)

 # create polygon coordinates for map display

 compare_dict[i]['polyline_bounds'] = polyline_bounds(bbox_list[i])

 # For displaying takes max landcover change over whole AOI and takes

 # proportions for each area of this

 key_min = max(compare_dict.keys(), key=(

 lambda k: compare_dict[k]['land_cov_max_change']))

 for i in range(len(bbox_list)):

 if compare_dict[key_min]['land_cov_max_change'] == 0:

 compare_dict[i]['land_cov_max_change_prop'] = 0

 else:

 compare_dict[i]['land_cov_max_change_prop'] = compare_dict[i]['land_cov_max_change']

/ \compare_dict[key_min]['land_cov_max_change']

 # Create a mask which combines cloud from both images

 for i in range(len(bbox_list)):

 compare_dict[i]['combined_cloud'] = np.zeros(

 shape=finish_master_dict[i]['cloud_basic'].shape)

 for j in range(len(compare_dict[i]['combined_cloud'])):

 for k in range(len(compare_dict[i]['combined_cloud'][j])):

 compare_dict[i]['combined_cloud'][j][k][0] = max(

 finish_master_dict[i]['cloud_basic'][j][k][0],

 start_master_dict[i]['cloud_basic'][j][k][0])

 # Mix the land cover from both images to understand what is being taken in

 # to account, and what is masked by cloud

 for i in range(len(bbox_list)):

 compare_dict[i]['non_cloud_landcover'] = np.zeros(

 shape=finish_master_dict[i]['cloud_basic'].shape)

 for j in range(len(compare_dict[i]['non_cloud_landcover'])):

 for k in range(len(compare_dict[i]['non_cloud_landcover'][j])):

 if compare_dict[i]['combined_cloud'][j][k][0] == 0:

 compare_dict[i]['non_cloud_landcover'][j][k][0] = max(

 finish_master_dict[i]['land'][j][k][0],\

 start_master_dict[i]['land'][j][k][0])

 compare_dict[i]['non_cloud_landcover'][j][k][1] = max(

 finish_master_dict[i]['land'][j][k][1],\

 start_master_dict[i]['land'][j][k][1])

 compare_dict[i]['non_cloud_landcover'][j][k][2] = max(

 finish_master_dict[i]['land'][j][k][2],\

 start_master_dict[i]['land'][j][k][2])

 # Calculates land cover proportions in the images only where cloud cover

 # isn't heavy in either before or after

 for i in range(len(bbox_list)):

 finish_master_dict[i]['CNN_pred'] = process_predict_img(

 finish_master_dict[i]['tiff'][:, :, [3, 2, 1]])[1]

 # print(finish_master_dict[i]['CNN_pred'])

 for i in range(len(bbox_list)):

 start_master_dict[i]['CNN_pred'] = process_predict_img(

 start_master_dict[i]['tiff'][:, :, [3, 2, 1]])[1]

 # print(start_master_dict[i]['CNN_pred'])

 for i in range(len(bbox_list)):

 compare_dict[i]['CNN_change'] = math.fabs(

 finish_master_dict[i]['CNN_pred'] -

 start_master_dict[i]['CNN_pred'])

 # print(compare_dict[i]['CNN_change'])

 print("Comparison analysis complete.")

 return(start_master_dict, finish_master_dict, compare_dict)

def first_stage_layers_visualise(

 start_master_dict,

 finish_master_dict,

 compare_dict,

 user_Lon_deg,

 user_Lat_deg):

 """

76

 Creates feature layers for display in Folium map

 Args:

 start_master_dict : A dictionary for the first timeframe containing lowest cloud imagery

and analysis

 finish_master_dict : A dictionary for the second timeframe containing lowest cloud image

ry and analysis

 compare_dict : A dictionary containing comparison analysis between both timeframes

 user_Lon_deg : User provided longitude coordinate of AOI

 user_Lat_deg : User provided latitude coordinate of AOI

 Outputs:

 A dictionary for each timeframe containing lowest cloud imagery and analysis

 A dictionary containing comparison analysis between both timeframes

 """

 m = folium.Map(

 location=[user_Lat_deg, user_Lon_deg],

 tiles='OpenStreetMap',

 zoom_start=14,

 control_scale=True

)

 after_image = folium.FeatureGroup(name='Second Period Imagery')

 for i in range(len(finish_master_dict)):

 folium.raster_layers.ImageOverlay(

 image=np.minimum(finish_master_dict[i]['tiff'][:, :, [3, 2, 1]] * 3, 1),

 bounds=finish_master_dict[i]['fol_bounds'],

 opacity=1

).add_to(after_image)

 before_image = folium.FeatureGroup(name='First Period Imagery')

 for i in range(len(start_master_dict)):

 folium.raster_layers.ImageOverlay(

 image=np.minimum(start_master_dict[i]['tiff'][:, :, [3, 2, 1]] * 3, 1),

 bounds=start_master_dict[i]['fol_bounds'],

 opacity=1

).add_to(before_image)

 combined_image_cloud = folium.FeatureGroup(

 name='Combined Period Cloud Cover', show=False)

 for i in range(len(start_master_dict)):

 folium.raster_layers.ImageOverlay(

 image=np.minimum(compare_dict[i]['combined_cloud'], 1),

 bounds=start_master_dict[i]['fol_bounds'],

 opacity=1

).add_to(combined_image_cloud)

 after_image_CART = folium.FeatureGroup(

 name='Second Period Land Cover', show=False)

 for i in range(len(finish_master_dict)):

 folium.raster_layers.ImageOverlay(

 image=np.minimum(finish_master_dict[i]['land'] * 3, 1),

 bounds=finish_master_dict[i]['fol_bounds'],

 opacity=1

).add_to(after_image_CART)

 before_image_CART = folium.FeatureGroup(

 name='First Period Land Cover', show=False)

 for i in range(len(start_master_dict)):

 folium.raster_layers.ImageOverlay(

 image=np.minimum(start_master_dict[i]['land'] * 3, 1),

 bounds=start_master_dict[i]['fol_bounds'],

 opacity=1

).add_to(before_image_CART)

 comp_image_land = folium.FeatureGroup(name='Land cover change', show=False)

 for i in range(len(compare_dict)):

 folium.Polygon(

 locations=compare_dict[i]['polyline_bounds'],

 color='red',

 opacity=compare_dict[i]['land_cov_max_change_prop'],

 fill=True,

 fill_opacity=compare_dict[i]['land_cov_max_change_prop'] / 4

).add_to(comp_image_land)

 comp_CNN_pred = folium.FeatureGroup(name='CNN Estimate change', show=False)

 for i in range(len(compare_dict)):

77

 folium.Polygon(

 locations=compare_dict[i]['polyline_bounds'],

 color='orange',

 opacity=compare_dict[i]['CNN_change'],

 fill=True,

 fill_opacity=compare_dict[i]['CNN_change'] / 4,

 popup='CNN Estimate 1st Period: {}. CNN Estimate 2nd Period: {}'.format(

 start_master_dict[i]['CNN_pred'],

 finish_master_dict[i]['CNN_pred'])).add_to(comp_CNN_pred)

 comp_CNN_pred.add_to(m)

 comp_image_land.add_to(m)

 combined_image_cloud.add_to(m)

 after_image_CART.add_to(m)

 before_image_CART.add_to(m)

 after_image.add_to(m)

 before_image.add_to(m)

 m.add_child(folium.LatLngPopup())

 folium.LayerControl().add_to(m)

 plugins.Fullscreen(

 position='topright',

 title='Full screen',

 title_cancel='Exit full screen',

 force_separate_button=True).add_to(m)

 return(m)

def user_GBDXCatalog_bbox(user_Lon_deg, user_Lat_deg, user_km=2.56 / 7):

 """

 Calculates bounding box coordinates for GBDX imagery request

 Args:

 user_Lon_deg : User provided longitude coordinate of AOI

 user_Lat_deg : User provided latitude coordinate of AOI

 user_km : width/height of AOI to be returned

 Outputs:

 A list containing GBDX format bounding box coordinates for AOI

 """

 user_loc = GeoLocation.from_degrees(

 user_Lat_deg, user_Lon_deg) # Note: Method takes LAT/LON and not LON/LAT

 user_SW_loc, user_NE_loc = user_loc.bounding_locations(user_km)

 return([user_SW_loc.deg_lon, user_SW_loc.deg_lat, user_NE_loc.deg_lon, user_NE_loc.deg_lat])

def sorted_CatalogID_list(

 user_AOI_bbox,

 filters=["(sensorPlatformName = 'WORLDVIEW03_VNIR')"]):

 """

 Requests metadata for DigitalGlobe imagery of AOI

 Args:

 user_AOI_bbox : A list containing GBDX format bounding box coordinates for AOI

 filters : the filters to apply to catalog imagery before returning metadata

 Outputs:

 A sorted list containing filtered GBDX imagery metadata over AOI

 """

 wkt_AOI = box(*user_AOI_bbox).wkt

 results = gbdx.catalog.search(searchAreaWkt=wkt_AOI, filters=filters)

 GBDX_results = []

 for i in range(len(results)):

 GBDX_results.append([])

 GBDX_results[i].append(results[i]['properties']['cloudCover'])

 GBDX_results[i].append(

 datetime.datetime.strptime(

 results[i]['properties']['timestamp'],

 "%Y-%m-%dT%H:%M:%S.%fZ"))

 GBDX_results[i].append(results[i]['properties']['catalogID'])

 GBDX_results_date = sorted(

 GBDX_results,

 key=lambda image: image[1],

78

 reverse=True)

 GBDX_results_date_cloud = sorted(

 GBDX_results_date,

 key=lambda image: math.ceil(

 image[0] / 10))

 return(GBDX_results_date_cloud)

def GBDX_IMG_Request(sorted_CatalogID_list, GBDX_bbox):

 """

 Requests imagery data from DigitalGlobe servers until first successful retrieval

 Args:

 sorted_CatalogID_list : A sorted list containing filtered GBDX imagery metadata over AOI

 GBDX_bbox : A list containing GBDX format bounding box coordinates for AOI

 Outputs:

 A pansharpened image in numpy array format

 The path to the locally stored image

 """

 for i in range(len(sorted_CatalogID_list)):

 try:

 print("Requesting image with catalogID = {}, captured at {}.".format(

 sorted_CatalogID_list[i][2], sorted_CatalogID_list[i][1]))

 img_pan_request = CatalogImage(

 sorted_CatalogID_list[i][2],

 pansharpen=True,

 bbox=GBDX_bbox)

 print("Image successfully retrieved.")

 print("Processing image.")

 print("...")

 pan_np = img_pan_request.rgb()

 pan_im = Image.fromarray(pan_np)

 pan_im.save(

 "Image_prioritised_{}.tif".format(

 sorted_CatalogID_list[i][2]))

 print("Image with catalogID = {} saved as 'image_prioritised_{}.tif'".format(

 sorted_CatalogID_list[i][2], sorted_CatalogID_list[i][2]))

 img_path = "Image_prioritised_{}.tif".format(

 sorted_CatalogID_list[i][2])

 return(pan_np, img_path)

 except BaseException:

 print(

 "Image not available, attempting next image. NOTE: This image may have increased

cloud coverage")

 print("Imagery not available at given coordinates, consider changing coordinates or ordering

imagery")

def on_button_clicked_stage_one(b):

 """

 Runs first stage of tool when button is clicked

 Args:

 NA

 Outputs:

 Interactive map displaying imagery and analysis

 """

 try:

 # Take weeks that user provides and create date range

 user_date_start = (str(user_date_start_low.value), str(

 (user_date_start_low.value) + datetime.timedelta(weeks=user_date_start_len.value)))

 user_date_finish = (str(user_date_final_low.value), str(

 (user_date_final_low.value) + datetime.timedelta(weeks=user_date_final_len.value)))

 user_dist_km = user_dist_km_UI.value

 user_Lon_deg = user_longitude.value

 user_Lat_deg = user_latitude.value

 print("Running Stage One.")

 print("User inputs: Longitude - {}, Latitude - {}, Radius - {}, \

First Period - {}, Second Period - {}".format(user_Lon_deg, user_Lat_deg, user_dist_km, user_dat

e_start, user_date_finish))

79

 print("Retrieving and analysing Sentinel-2 imagery")

 start_master_dict, finish_master_dict, compare_dict = first_stage_map_layer_dicts(

 user_Lon_deg, user_Lat_deg, user_dist_km, km_per_tile, user_date_start, user_date_fi

nish)

 m = first_stage_layers_visualise(

 start_master_dict,

 finish_master_dict,

 compare_dict,

 user_Lon_deg,

 user_Lat_deg)

 print("about to display map")

 with out:

 clear_output()

 display(widgets.VBox(boxes))

 display(m)

 # m.save("html_obj_det_map_{}_{}.html".format(user_Lon_deg,user_Lat_deg))

 #webbrowser.open('file://' + os.path.realpath("html_obj_det_map_{}_{}.html".format(user_

Lon_deg,user_Lat_deg)))

 except TypeError:

 print("Please review parameters.")

 except BaseException:

 print("Unexpected error")

def initialise_UI():

 """

 Initialises User Interface and Map Display

 Args:

 NA

 Outputs:

 User Interface and Interactive Map

 """

 # Header at top of tool

 title = widgets.HTML(

 value="<h1 style='font-size:40px;background-color:LightBlue;text-align:center;border:2px

solid Black;'>\

 Welcome to the project tool <b style='color:White;'>Stage One & Two</h1> \

 <p style='font-size:20px;text-align:center;'>Please choose your parameters and click Run

Stage One or Run Stage Two </p>",

 layout=widgets.Layout(

 width='100%',

 height='200%'))

 # Setting style to ensure full label is displayed

 style = {'description_width': 'initial'} # to display whole label in UI

 global user_longitude

 user_longitude = widgets.FloatSlider(

 value=103.5718,

 min=-180,

 max=180,

 step=0.0001,

 description='Longitude (slider):',

 style=style,

 layout=widgets.Layout(width='66%', height='100%'),

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.4f',

)

 global user_longitude_freetext

 user_longitude_freetext = widgets.BoundedFloatText(

 value=103.5718,

 min=-180,

 max=180.0,

 step=0.0001,

 description='Longitude (freetext):',

 style=style,

 disabled=False

80

)

 global lon_link

 lon_link = widgets.jslink(

 (user_longitude, 'value'), (user_longitude_freetext, 'value'))

 global user_latitude

 user_latitude = widgets.FloatSlider(

 value=1.3426,

 min=-90,

 max=90,

 step=0.0001,

 description='Latitude (slider):',

 style=style,

 layout=widgets.Layout(width='66%', height='100%'),

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.4f',

)

 global user_latitude_freetext

 user_latitude_freetext = widgets.BoundedFloatText(

 value=1.3426,

 min=-90,

 max=90.0,

 step=0.0001,

 description='Latitude (freetext):',

 style=style,

 disabled=False

)

 global lat_link

 lat_link = widgets.jslink(

 (user_latitude, 'value'), (user_latitude_freetext, 'value'))

 global user_dist_km_UI

 user_dist_km_UI = widgets.FloatSlider(

 value=2.0,

 min=1,

 max=5.0,

 step=0.1,

 description='Radius of interest (km):',

 style=style,

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.1f',

)

 global user_date_start_low

 user_date_start_low = widgets.DatePicker(

 description='First period start date:',

 value=datetime.date(2016, 5, 13),

 style=style,

 disabled=False

)

 global user_date_start_len

 user_date_start_len = widgets.IntSlider(

 value=1.0,

 min=1.0,

 max=8.0,

 step=1.0,

 description='Period length (weeks):',

 style=style,

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.0f',

)

 global user_date_final_low

 user_date_final_low = widgets.DatePicker(

81

 description='Second period start date:',

 value=datetime.date(2018, 6, 1),

 max=datetime.datetime.now(),

 style=style,

 disabled=False

)

 global user_date_final_len

 user_date_final_len = widgets.IntSlider(

 value=1.0,

 min=1.0,

 max=8.0,

 step=1.0,

 description='Period length (weeks):',

 style=style,

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.0f',

)

 global conf_thresh

 conf_thresh = widgets.FloatSlider(

 value=0.6,

 min=0.2,

 max=1.0,

 step=0.05,

 description='Object Confidence Min:',

 style=style,

 #layout=widgets.Layout(width='66%', height='100%'),

 disabled=False,

 continuous_update=False,

 orientation='horizontal',

 readout=True,

 readout_format='.2f',

)

 run_button_one = widgets.Button(

 description="Run Stage One (Low resolution Earth Observation)",

 layout=widgets.Layout(

 width='50%',

 height='100%'),

)

 run_button_one.style.button_color = 'lightblue'

 run_button_one.on_click(on_button_clicked_stage_one)

 run_button_two = widgets.Button(

 description="Run Stage Two (High resolution Object Detection)",

 layout=widgets.Layout(

 width='50%',

 height='100%'),

)

 run_button_two.style.button_color = 'orange'

 run_button_two.on_click(on_button_clicked_stage_two)

 m = folium.Map(

 location=[12, 110],

 tiles='OpenStreetMap',

 zoom_start=5,

 control_scale=True

)

 m.add_child(folium.LatLngPopup())

 title_box = widgets.HBox([title])

 toppest_box = widgets.HBox([user_longitude, user_longitude_freetext])

 top_box = widgets.HBox([user_latitude, user_latitude_freetext])

 middle_box = widgets.HBox(

 [user_date_start_low, user_date_start_len, user_dist_km_UI])

 lower_box = widgets.HBox(

 [user_date_final_low, user_date_final_len, conf_thresh])

 button_box = widgets.HBox([run_button_one, run_button_two])

 out = widgets.Output(layout={'border': '1px solid black'})

 boxes = [

 title_box,

 toppest_box,

82

 top_box,

 middle_box,

 lower_box,

 button_box]

 return out, boxes, m

def draw_bboxes(img, boxes, classes):

 """

 Reference: Adapted from DIUx-xView code - [72] - https://github.com/DIUx-xView/baseline

 Draw bounding boxes on top of an image

 Args:

 img : Array of image to be modified

 boxes: An (N,4) array of boxes to draw, where N is the number of boxes.

 classes: An (N,1) array of classes corresponding to each bounding box.

 Outputs:

 An array of the same shape as 'img' with bounding boxes

 and classes drawn

 """

 name_from_class = dict()

 name_from_class[11] = 'Fixed-wing Aircraft'

 name_from_class[12] = 'Small Aircraft'

 name_from_class[13] = 'Passenger/Cargo Plane'

 name_from_class[15] = 'Helicopter'

 name_from_class[17] = 'Passenger Vehicle'

 name_from_class[18] = 'Small Car'

 name_from_class[19] = 'Bus'

 name_from_class[20] = 'Pickup Truck'

 name_from_class[21] = 'Utility Truck'

 name_from_class[23] = 'Truck'

 name_from_class[24] = 'Cargo Truck'

 name_from_class[25] = 'Truck Tractor w/ Box Trailer'

 name_from_class[26] = 'Truck Tractor'

 name_from_class[27] = 'Trailer'

 name_from_class[28] = 'Truck Tractor w/ Flatbed Trailer'

 name_from_class[29] = 'Truck Tractor w/ Liquid Tank'

 name_from_class[32] = 'Crane Truck'

 name_from_class[33] = 'Railway Vehicle'

 name_from_class[34] = 'Passenger Car'

 name_from_class[35] = 'Cargo/Container Car'

 name_from_class[36] = 'Flat Car'

 name_from_class[37] = 'Tank Car'

 name_from_class[38] = 'Locomotive'

 name_from_class[40] = 'Maritime Vessel'

 name_from_class[41] = 'Motorboat'

 name_from_class[42] = 'Sailboat'

 name_from_class[44] = 'Tugboat'

 name_from_class[45] = 'Barge'

 name_from_class[47] = 'Fishing Vessel'

 name_from_class[49] = 'Ferry'

 name_from_class[50] = 'Yacht'

 name_from_class[51] = 'Container Ship'

 name_from_class[52] = 'Oil Tanker'

 name_from_class[53] = 'Engineering Vehicle'

 name_from_class[54] = 'Tower crane'

 name_from_class[55] = 'Container Crane'

 name_from_class[56] = 'Reach Stacker'

 name_from_class[57] = 'Straddle Carrier'

 name_from_class[59] = 'Mobile Crane'

 name_from_class[60] = 'Dump Truck'

 name_from_class[61] = 'Haul Truck'

 name_from_class[62] = 'Scraper/Tractor'

 name_from_class[63] = 'Front loader/Bulldozer'

 name_from_class[64] = 'Excavator'

 name_from_class[65] = 'Cement Mixer'

 name_from_class[66] = 'Ground Grader'

 name_from_class[71] = 'Hut/Tent'

 name_from_class[72] = 'Shed'

 name_from_class[73] = 'Building'

 name_from_class[74] = 'Aircraft Hangar'

 name_from_class[76] = 'Damaged Building'

 name_from_class[77] = 'Facility'

 name_from_class[79] = 'Construction Site'

83

 name_from_class[83] = 'Vehicle Lot'

 name_from_class[84] = 'Helipad'

 name_from_class[86] = 'Storage Tank'

 name_from_class[89] = 'Shipping container lot'

 name_from_class[91] = 'Shipping Container'

 name_from_class[93] = 'Pylon'

 name_from_class[94] = 'Tower'

 source = Image.fromarray(img)

 draw = ImageDraw.Draw(source)

 w2, h2 = (img.shape[0], img.shape[1])

 idx = 0

 for i in range(len(boxes)):

 xmin, ymin, xmax, ymax = boxes[i]

 c = classes[i]

 name = name_from_class[c]

 draw.text((xmin + 15, ymin + 15), str(name))

 for j in range(4):

 draw.rectangle(

 ((xmin + j, ymin + j), (xmax + j, ymax + j)), outline="red")

 return source

def GBDX_to_folium_bounds(sub_bbox):

 """

 Convert GBDX bounding box coordinates to Folium format

 Args:

 sub_bbox : GBDX format bounding box

 Outputs:

 Folium format bounding box

 """

 fol_bound = [[sub_bbox[1], sub_bbox[0]], [[sub_bbox[3], sub_bbox[2]]]]

 return(fol_bound)

def on_button_clicked_stage_two(b):

 """

 Runs second stage of tool when button is clicked

 Args:

 NA

 Outputs:

 Interactive map displaying imagery and analysis

 """

 try:

 # retrieve Lon/Lat from widgets

 user_Lon_deg = user_longitude.value

 user_Lat_deg = user_latitude.value

 conf_thresh_val = conf_thresh.value

 print("Running Stage Two.")

 print(

 "User inputs: Longitude - {}, Latitude - {}, Confidence Theshold - {}".format(

 user_Lon_deg,

 user_Lat_deg,

 conf_thresh_val))

 # return bbox which is 1/7 size of Sentinel-2 sub-bbox

 user_GBDXCatalog_bboxes = user_GBDXCatalog_bbox(

 user_Lon_deg, user_Lat_deg)

 # query catalog for candidate images, and sort so that highest priority

 # image is first

 print("Retrieving list of candidate images")

 sorted_CatalogID = sorted_CatalogID_list(user_GBDXCatalog_bboxes)

 # loop through list until image returned and saved

 print("Candidate images: {}".format(len(sorted_CatalogID)))

 try:

 returned_img, img_path = GBDX_IMG_Request(

 sorted_CatalogID, user_GBDXCatalog_bboxes)

84

 except BaseException:

 print("Tool stopped running.")

 # load image saved and perform object detection

 obj_det_img, ob_det_path = run_predictions(output='preditions_txt_{}_{}.txt'.format(

 user_Lon_deg, user_Lat_deg), image_loc=img_path, confidence_threshold=conf_thresh_va

l, checkpoint='models/multires.pb', chip_size=300)

 # Geolocation on Folium map

 bbox_bounds = GBDX_to_folium_bounds(user_GBDXCatalog_bboxes)

 m = folium.Map(

 location=[user_Lat_deg, user_Lon_deg],

 tiles='OpenStreetMap',

 zoom_start=17,

 control_scale=True,

 min_zoom=4,

 max_zoom=21

)

 obj_ident = folium.FeatureGroup(name='Object Identification')

 folium.raster_layers.ImageOverlay(

 image=np.asarray(obj_det_img),

 bounds=bbox_bounds,

 opacity=1

).add_to(obj_ident)

 GBDX_img = folium.FeatureGroup(name='High Resolution Image')

 folium.raster_layers.ImageOverlay(

 image=np.asarray(returned_img),

 bounds=bbox_bounds,

 opacity=1

).add_to(GBDX_img)

 GBDX_img.add_to(m)

 obj_ident.add_to(m)

 m.add_child(folium.LatLngPopup())

 folium.LayerControl().add_to(m)

 plugins.Fullscreen(

 position='topright',

 title='Full screen',

 title_cancel='Exit full screen',

 force_separate_button=True).add_to(m)

 m.save(

 "html_obj_det_map_{}_{}.html".format(

 user_Lon_deg,

 user_Lat_deg))

 print("Opening imagery in new tab")

 webbrowser.open(

 'file://' +

 os.path.realpath(

 "html_obj_det_map_{}_{}.html".format(

 user_Lon_deg,

 user_Lat_deg)))

 except TypeError:

 print("Please review parameter")

