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Motivation

These 4 processes exhibit self-excitation: 

The occurrence of events promotes future 
events.

As an analyst, we want to find out:

• Does the rate of events vary in space and 
time? 

• What spatial or temporal covariates may be 
related to the rate of events?

• What is the triggering rate?

• How are the triggered events distributed in 
space and time?
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Memoryfull: every event increases the chance of 
other events occurring which results in clustering

It can be shown that if α<β process is contained:
Fraction of ‘triggered’ events n = Nt/N = α/β
Cluster size c= 1 / (1-n) E[λ] = λ0c            
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α,β, λ0 can be estimated using maximum likelihood 
estimation. It can be shown that:

If the model is a good fit, it can be shown that the 
residuals should be Poisson distributed with exponential 
interevent times.
Goodness of fit can then be judged by plotting QQ-plot.

Heusser (2013) analysed 5000 Bitcoin trades between 
13:10 and 19:57 on 20 April 2013 using this approach:

Inference and Diagnostics

λ0 = 0.07
α = 1.18
β = 1.79
R2=0.99

Branching ratio n=65% indicates that 2/3 of 
trades are generated as a result of other trades.
Average cluster  size c= 2.8



Extensions

Space Inhomogeneity Marking

Trigger function: λ(t) = λ0 + Σti<t g(t-ti) Mutual Excitation: λu(t) = λ0u + Σk=1,…,m Σti<t gu,k(t-ti) 

λ(t,x,y) = λ0+ Σti<t g(t-ti,x-xi,y-yi) λ(t) = λ0(t)+ Σti<t g(t-ti) λ(t,M) = j(M) λ(t) 



Seismic Activity –
Ogata (1999)

An increase of underground water level can 
trigger shallow earthquakes with some 
probability. 

The seasonality of the microseismicity around 
the Australian Capital Territory (ACT) including 
Canberra, Australia looks similar to the Sydney 
rainfall pattern rather than Canberra’s. 

This might suggest a correlation between 
earthquake occurrence around ACT and the 
migration of underground water beneath the 
southeastern highlands from eastern Australia.



Crime – Mohler (2011)
Spatial offspring/parent interpoint distances: Forecasting strategy comparison:

Elevated crime risk travels ~100 m from the house of an initial 
burglary to the location of direct offspring events
The risk travels vertically and horizontally (along streets), more 
so than it does in other directions.

Predicted location of 660 crimes out of 2627 within 200m2 cell , 
compared with 547 crimes predicted by standard technique. 



Epidemics – Meyer (2014)

• Comparison of size distributions of 
simulated waves of influenza during the 
first 20 weeks of 2008 trained by 
previous 5 years. 

• Model complexity increases from top to 
bottom

• Confirms that power-law distribution of 
short-time human travels translates to 
modelling of infectious disease spread

Dashed line corresponds to observed size 



Caution

• Hawkes model applies only to clustered, self-exciting processes where there is an 
underlying generative process. 

• For example an infectious disease with no known carriers and where all infections 
can be traced back to patient ‘0’ cannot be modelled using the Hawkes model

• MLE for estimating parameters can be computationally intensive and scale with n2

• Many algorithms have been derived to counteract this effect

• Diagnostics tools should be included in any application of the Hawkes model
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