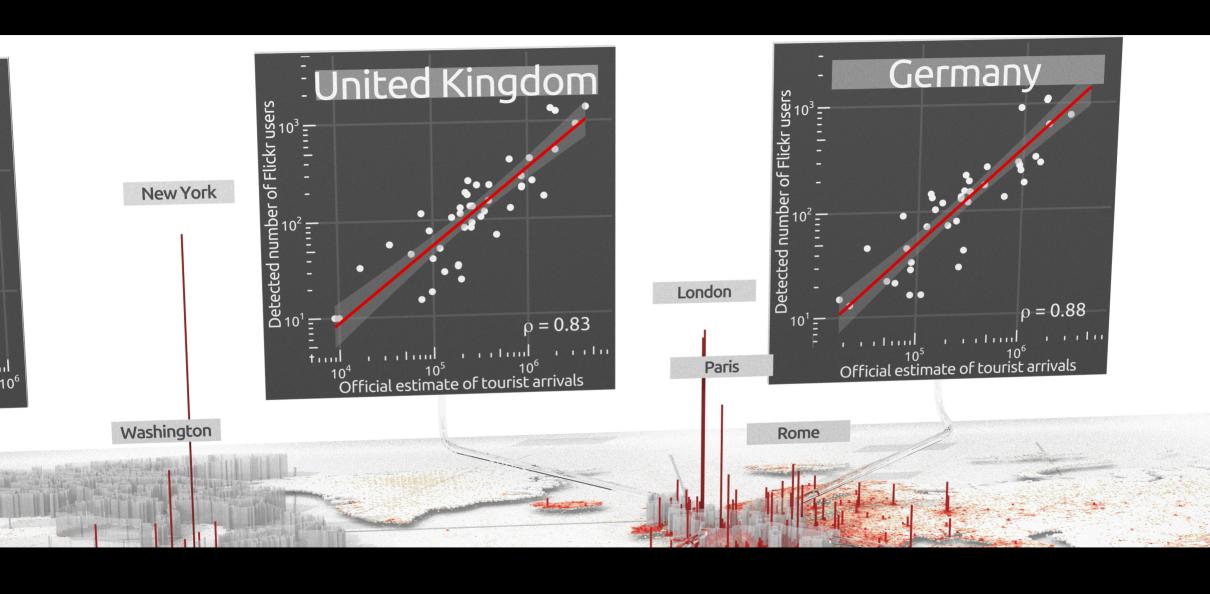
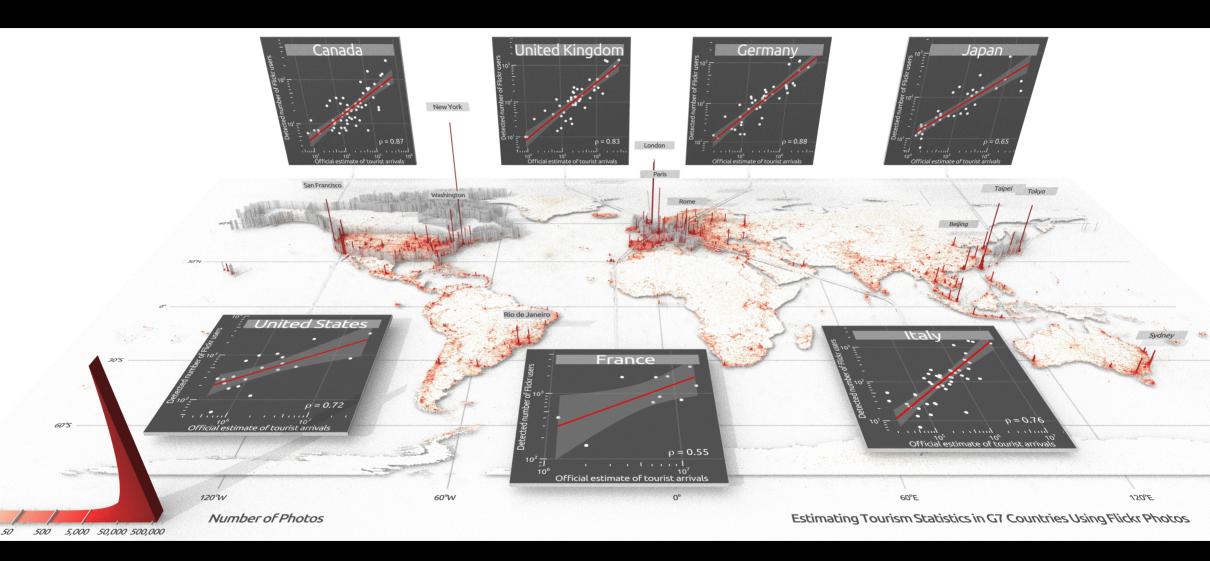
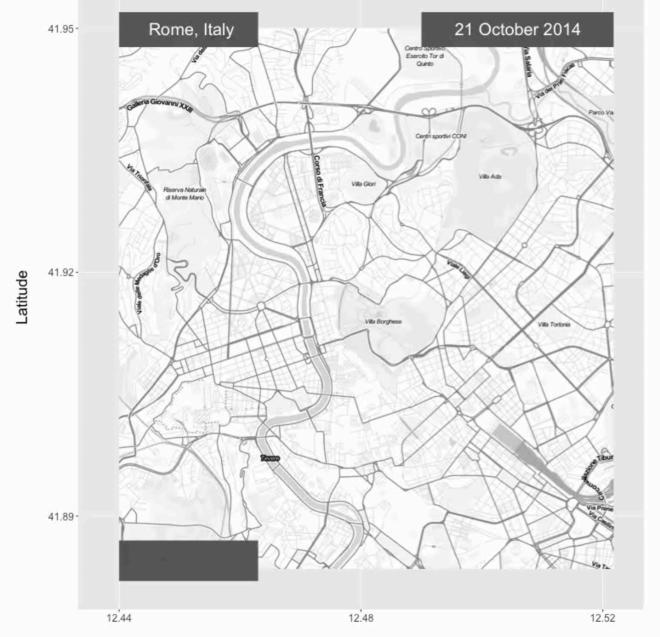


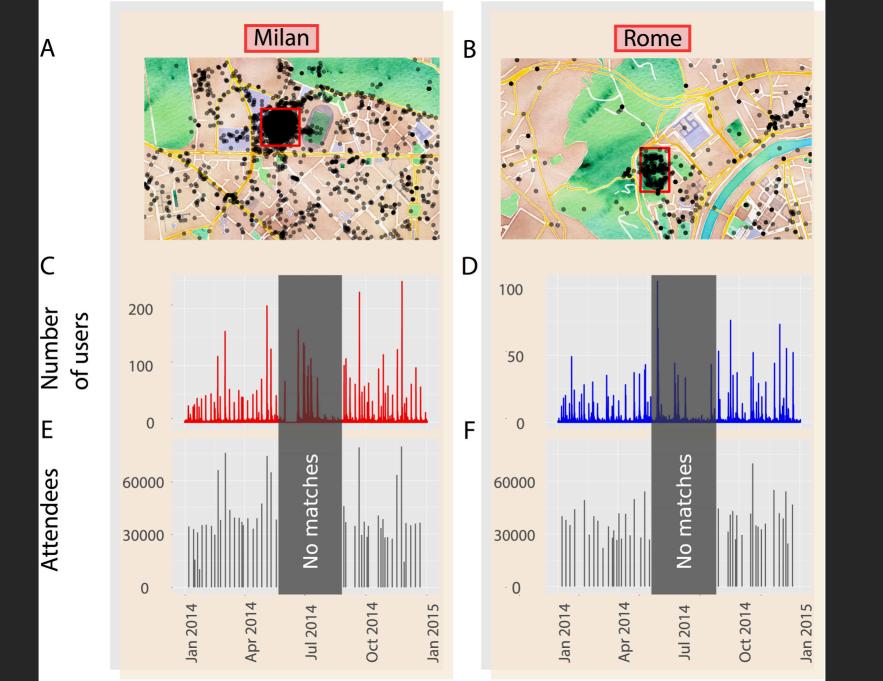
Barchiesi, Moat, Alis, Bishop & Preis (2015)

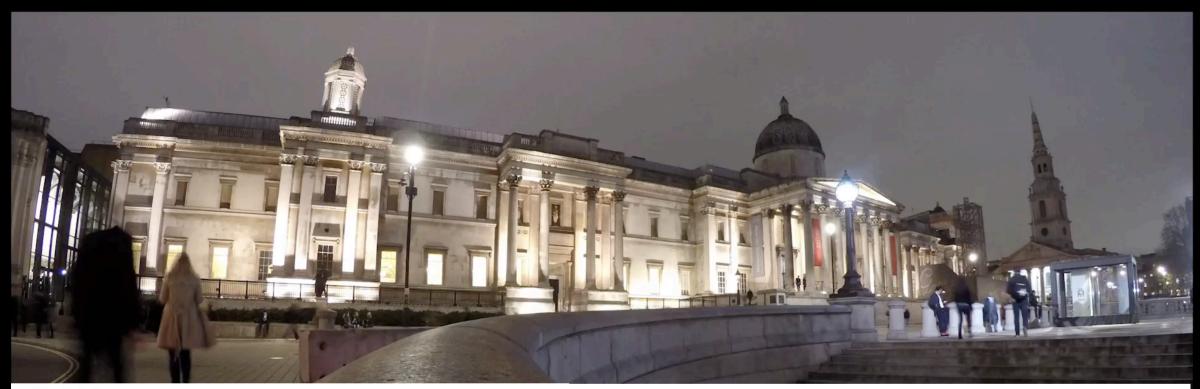




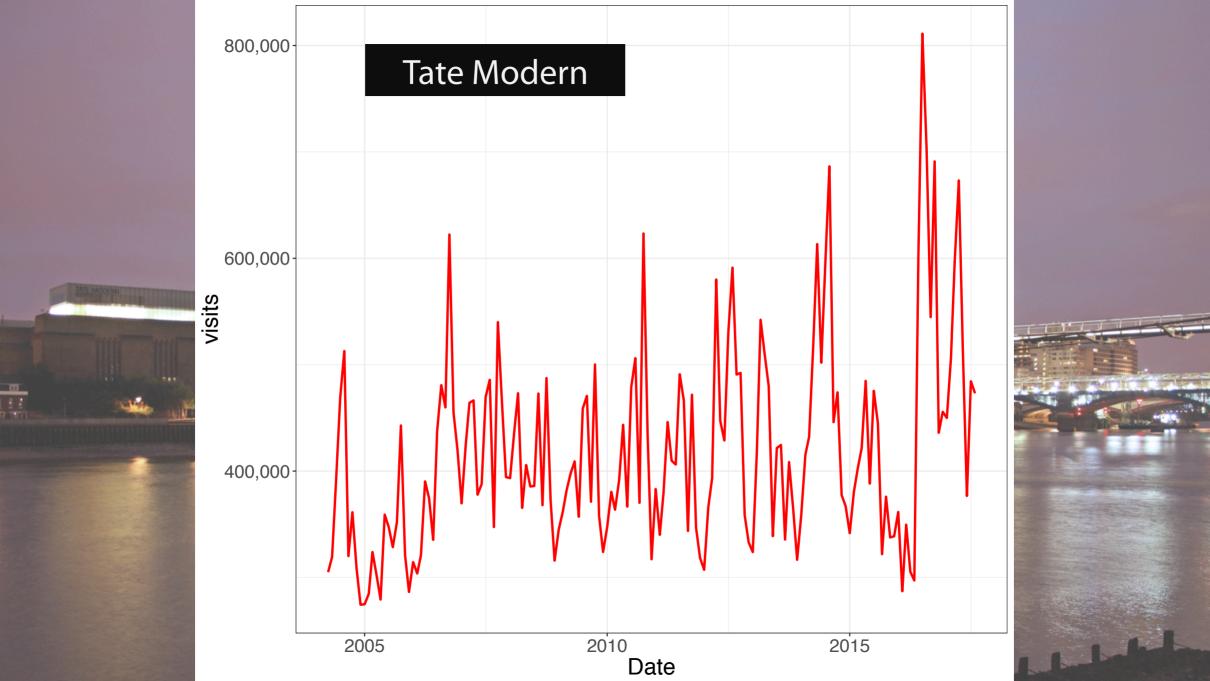


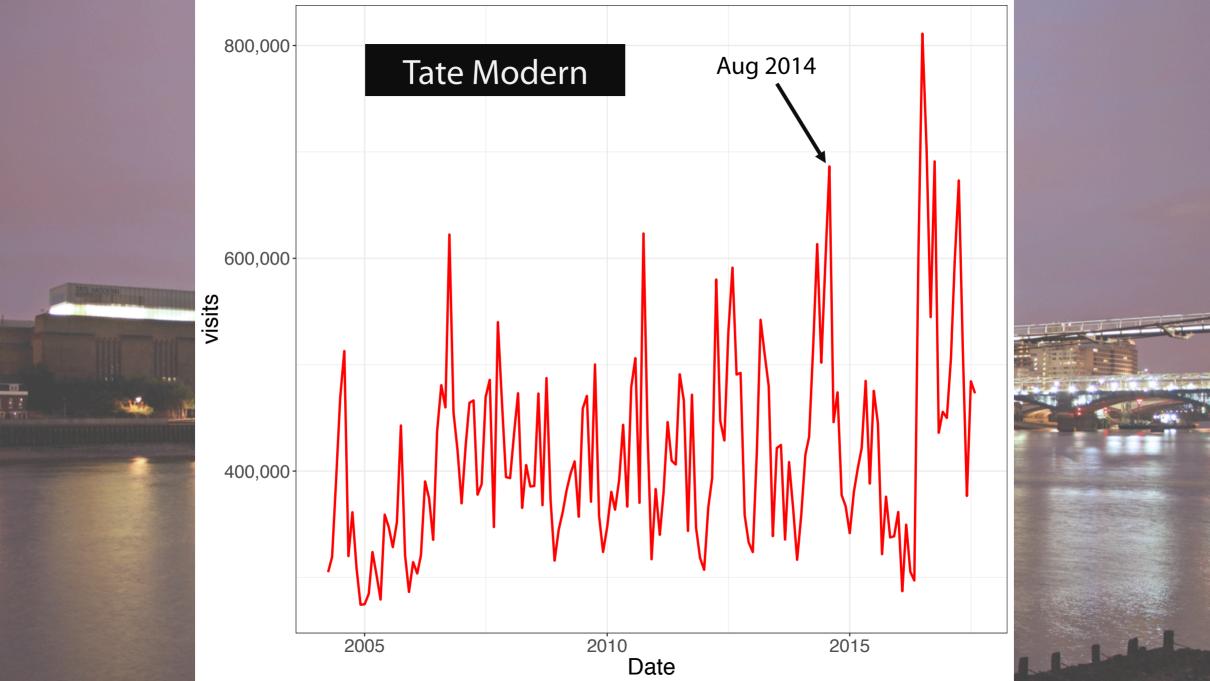
Longitude

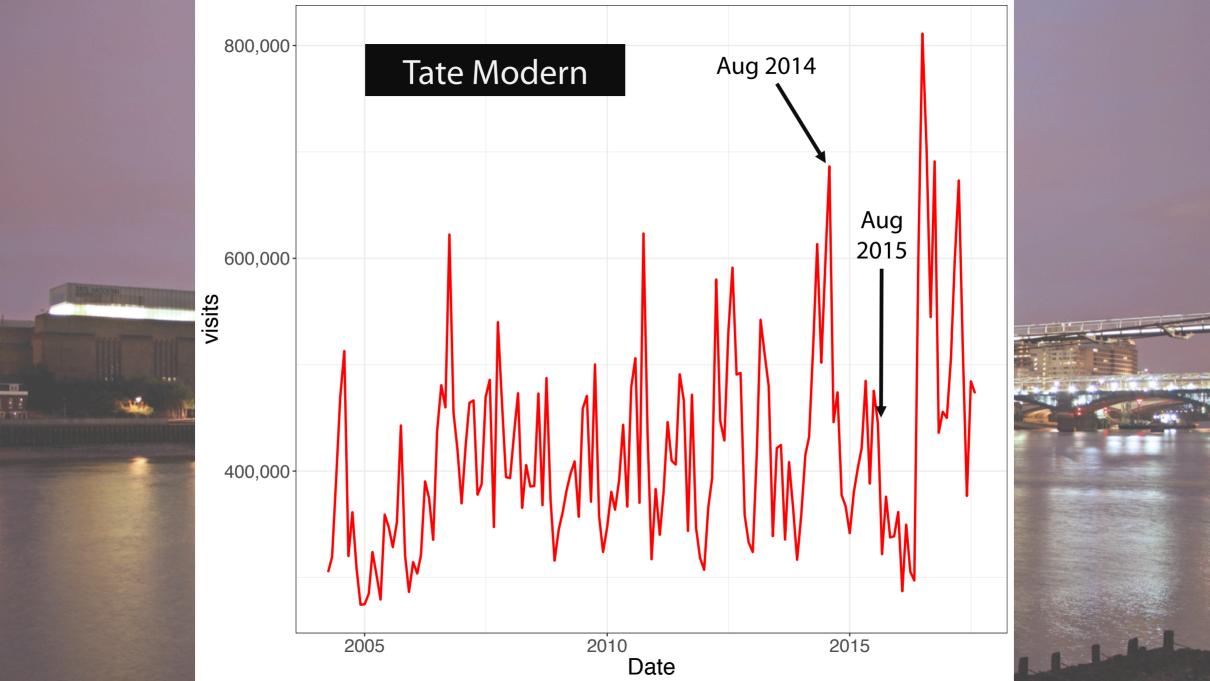


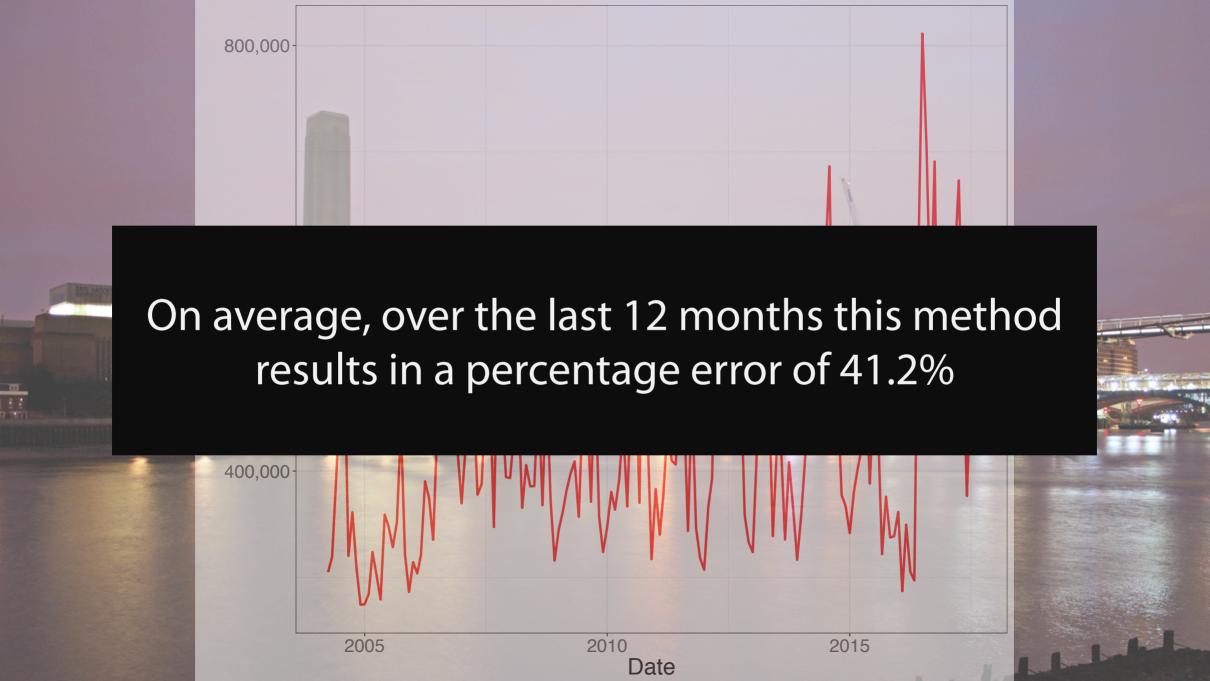


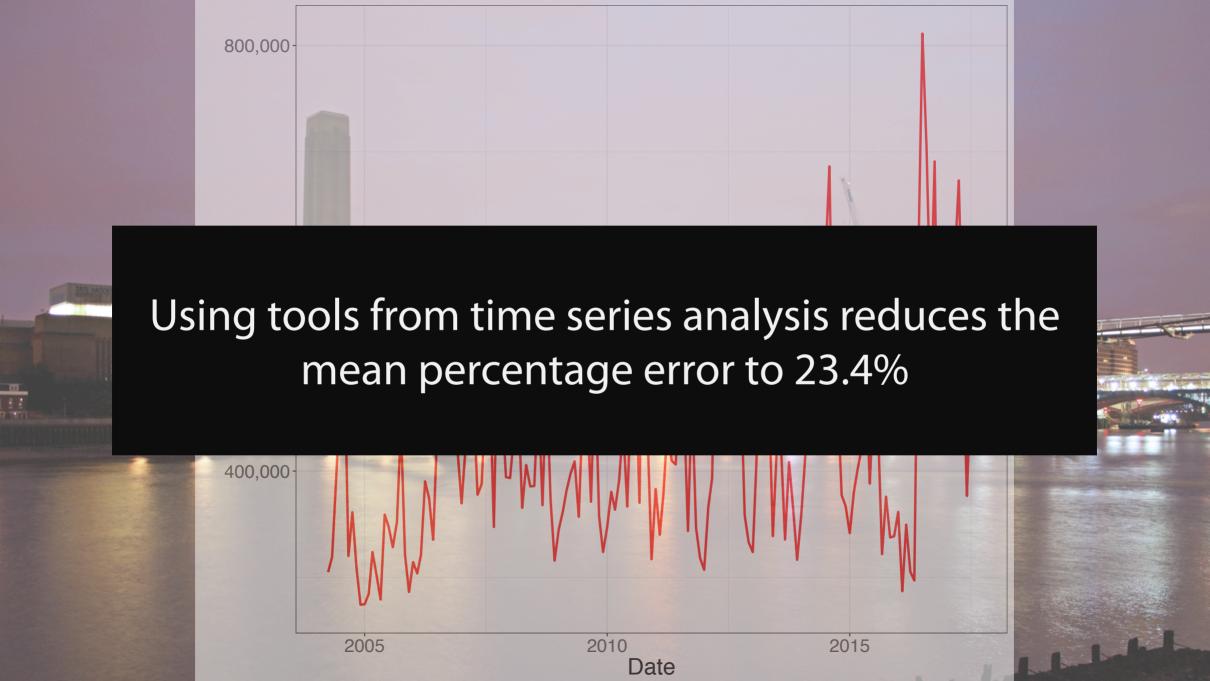
Department for Digital, Culture Media & Sport

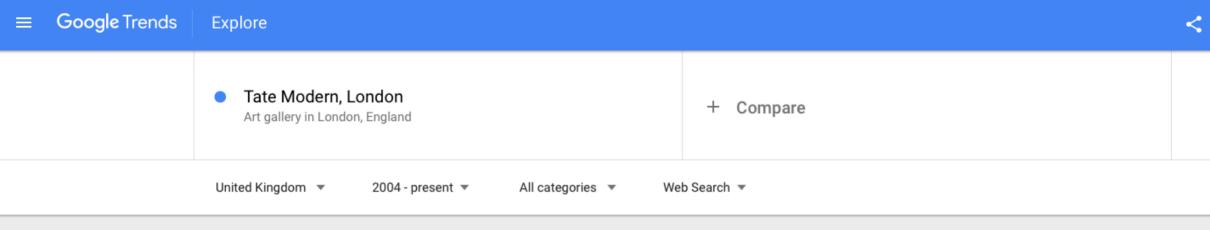


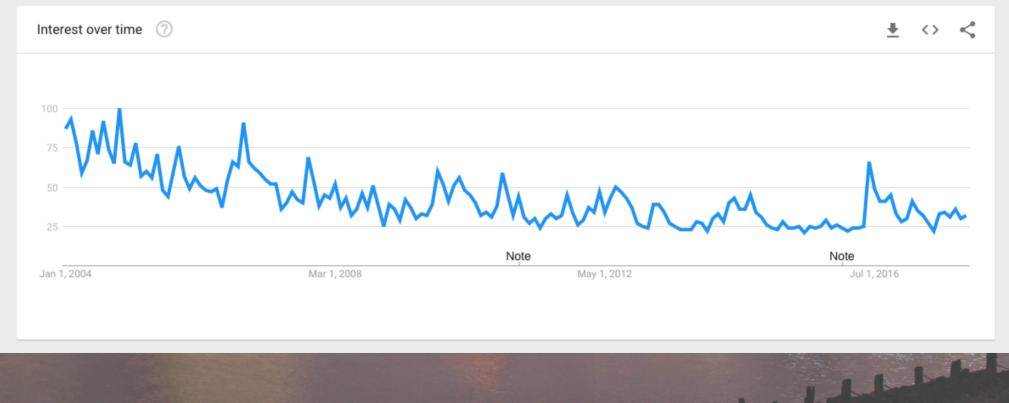












Data Science Lab

datasciencelab.co.uk

Estimates of museum and gallery visits using online data

November 2017

Estimates are generated using a combination of figures from past visits to museums and galleries, together with data on how many people have been searching for those museums and galleries on the popular search engine *Google*. Confidence intervals represent the interval within which the estimates fall with 95% probability.

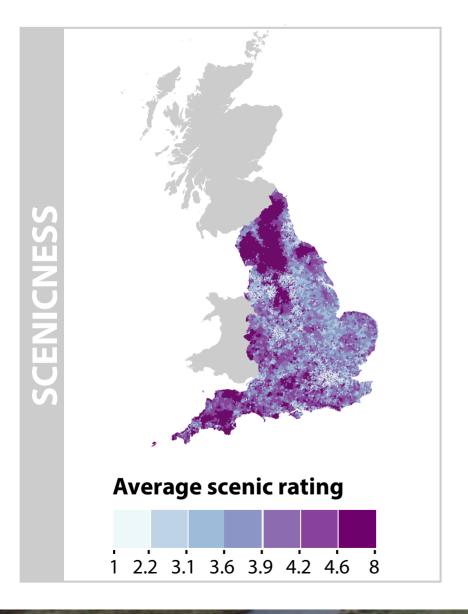
Museum	Oct	Nov	Estimate	95% Confidence	Year-	-on-year
	2017	2016	Nov 2017	Interval	change (%)	
Science Museum	276,299	213,130	204,634	(177,000 - 232,268)	7	-4
British Museum	479,492	477,088	477,470	(328,439 - 626,501)	7	0
Natural History	427,034	342,784	330,226	(272,142 - 388,310)	7	-4
Tate Modern	512,262	436,004	421,087	(287,684 - 554,490)	7	-3
Geffrye Museum	9,385	8,202	8,889	(6,432 - 11,346)	7	8
Horniman Museum	85,513	45,291	52,566	(38,410 - 66,722)	7	16
National Gallery	416,086	527,795	460,322	(347,619 - 573,025)	7	-13
Victoria and Albert	350,904	228,418	273,130	(216,200 - 330,061)	7	20
National Portrait Gallery	80,172	154,664	101,605	(67,290 - 135,920)	7	-34

Comparison of estimates to true values for October 2017

Here, we report a comparison between our estimates for October 2017 and the actual figures recorded by the museums and galleries.

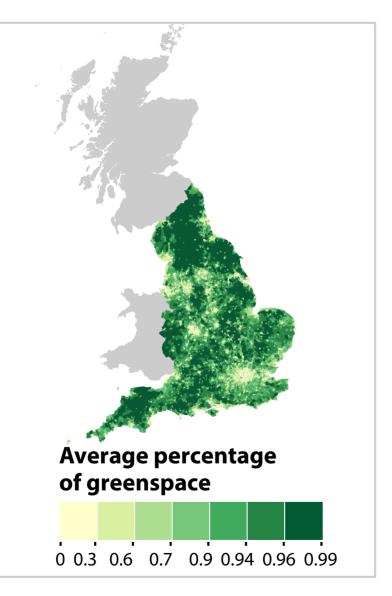
Museum	Sep	Oct	Estimate	95% Confidence	dence Actual visits Year-on-year ch		r change
	2017	2016	Oct 2017	Interval	Oct 2017	Predicted	Actual
Science Museum	182,938	287,881	316,357	(288,482 - 344,232)	276,299	A	V
British Museum	422,497	541,954	473,923	(324,652 - 623,194)	479,492	Y	5
Natural History	335,004	425,923	491,560	(434,401 - 548,720)	427,034	*	,
Tate Modern	406,788	681,188	520,418	(386,115 - 654,720)	512,262	Y	Y
Geffrye Museum	9,807	10,348	10,753	(8,340 - 13,166)	9,385	1	7
Horniman Museum	63,586	84,487	83,649	(68,161 - 99,137)	85,513	7	1
National Gallery	319,761	585,215	438,806	(330,460 - 547,152)	416,086	Y	5
Victoria and Albert	495,227	252,484	354,660	(293,452 - 415,868)	350,904	7	,
National Portrait Gallery	83,437	184,001	125,777	(92,893 - 158,661)	80,172	Y	5

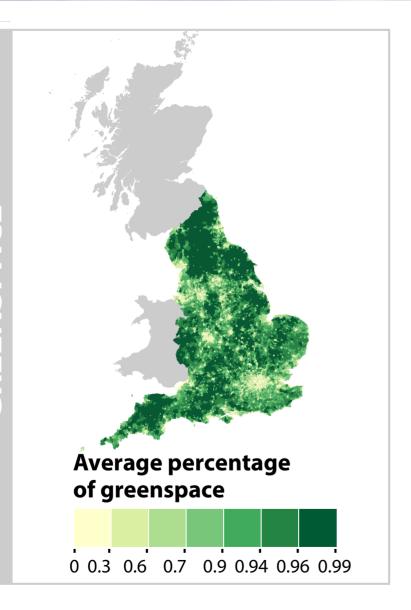
Photo by David Wild (Licence)

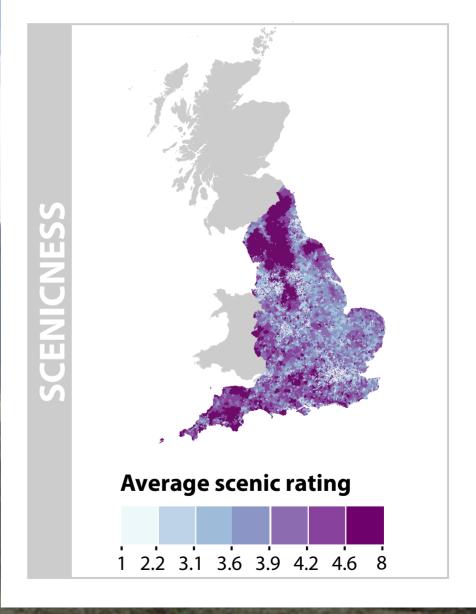


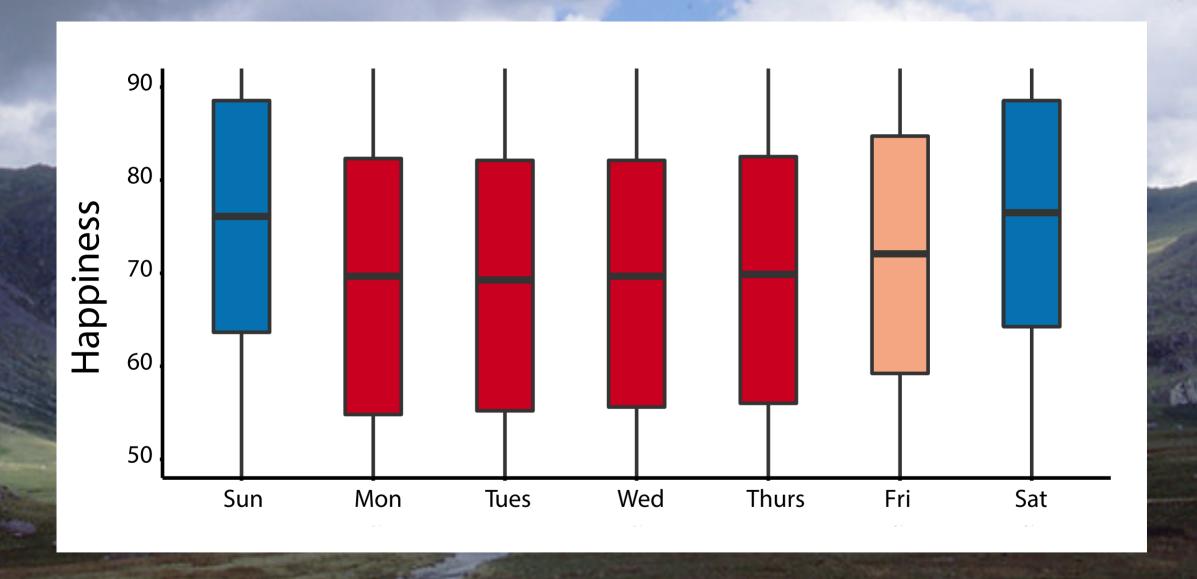
People who live in more scenic locations report better health

Seresinhe, Preis & Moat (2015)

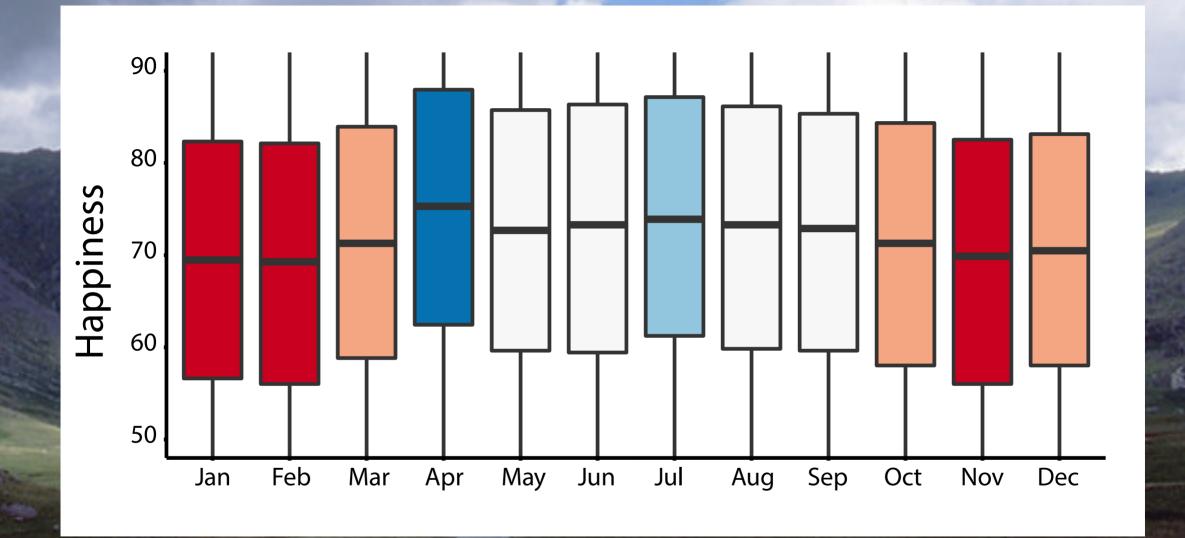




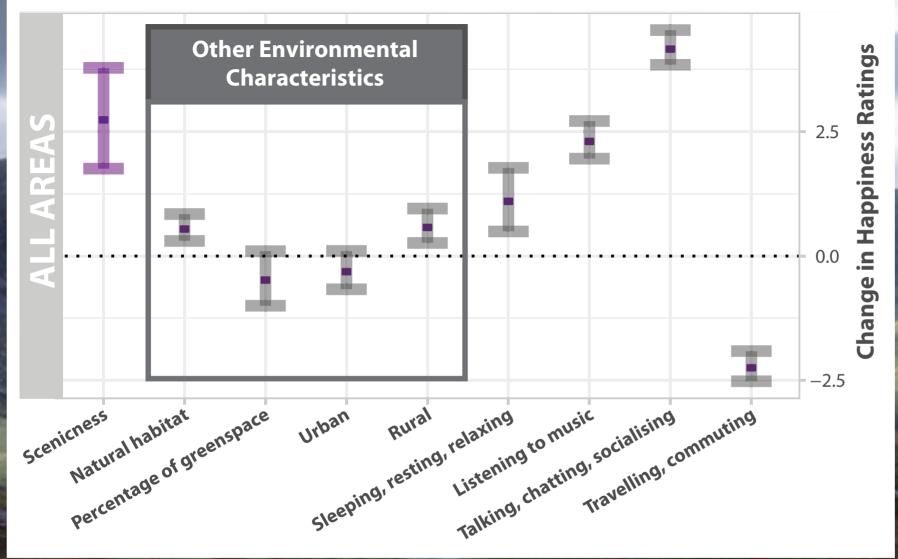


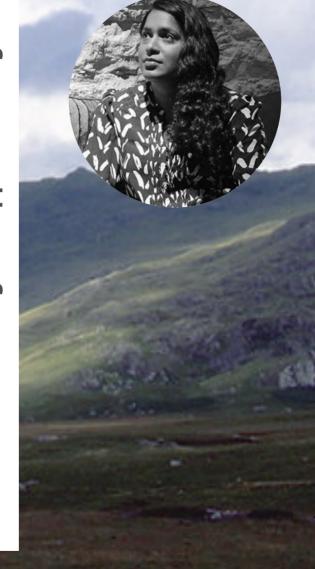


Seresinhe, Preis, MacKerron & Moat (under review)



Seresinhe, Preis, MacKerron & Moat (under review)





Seresinhe, Preis, MacKerron & Moat (under review)

Places365 *0.293* Valley

Categories 0.203 Lake Natural

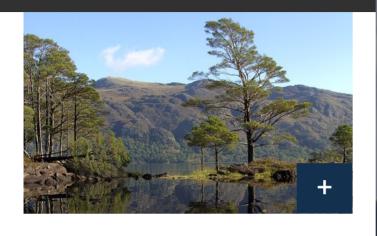
0.128 Mountain

SUN Scene 0.856 Natural Light

Attributes 0.081 Open Area

0.058 Sailing / Boating

Lake natural

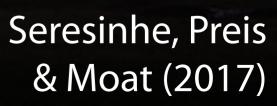


Valley

Lake natural

Valley

Industrial area

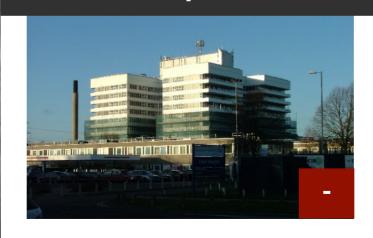


Lake natural

Valley

Industrial area

Hospital



& Moat (2017)

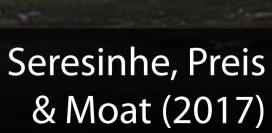
Cottage

Viaduct

Cottage

Viaduct

Trees



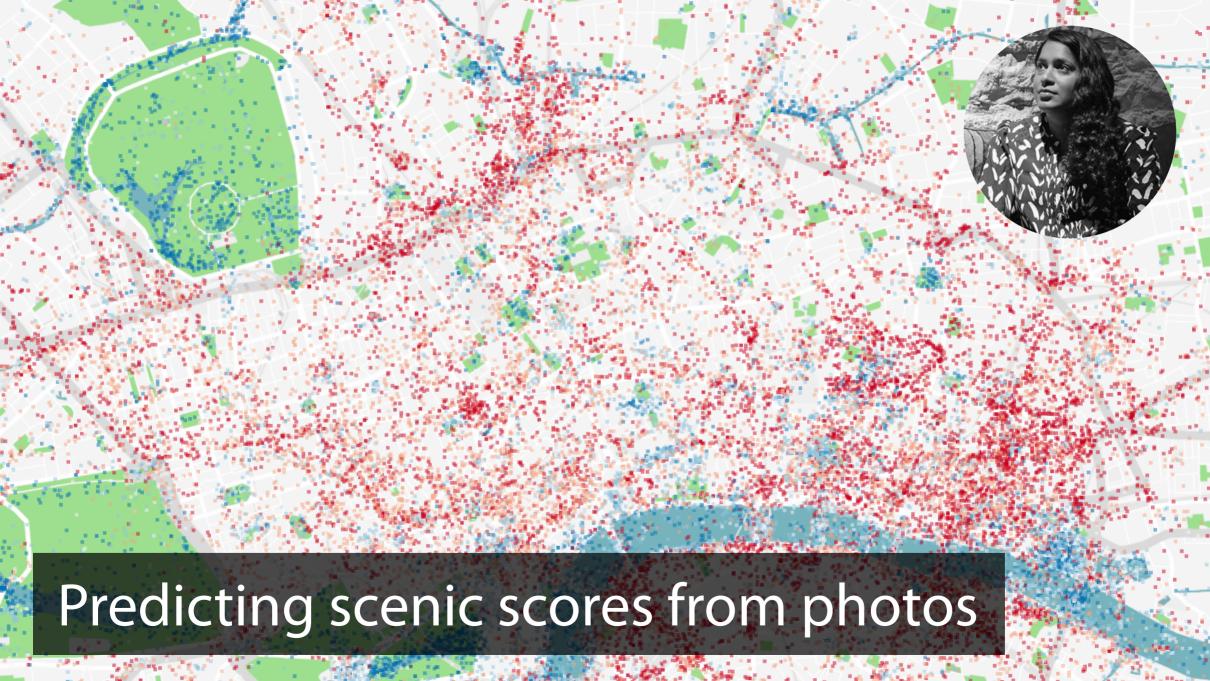
Cottage

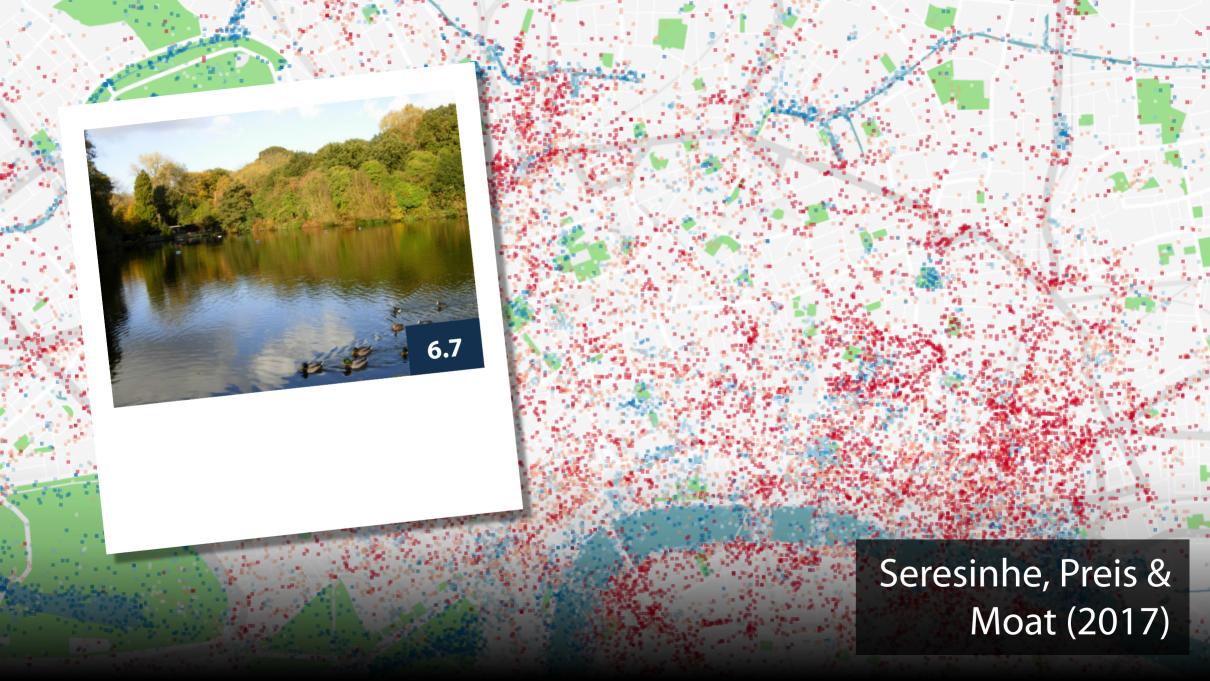
Viaduct

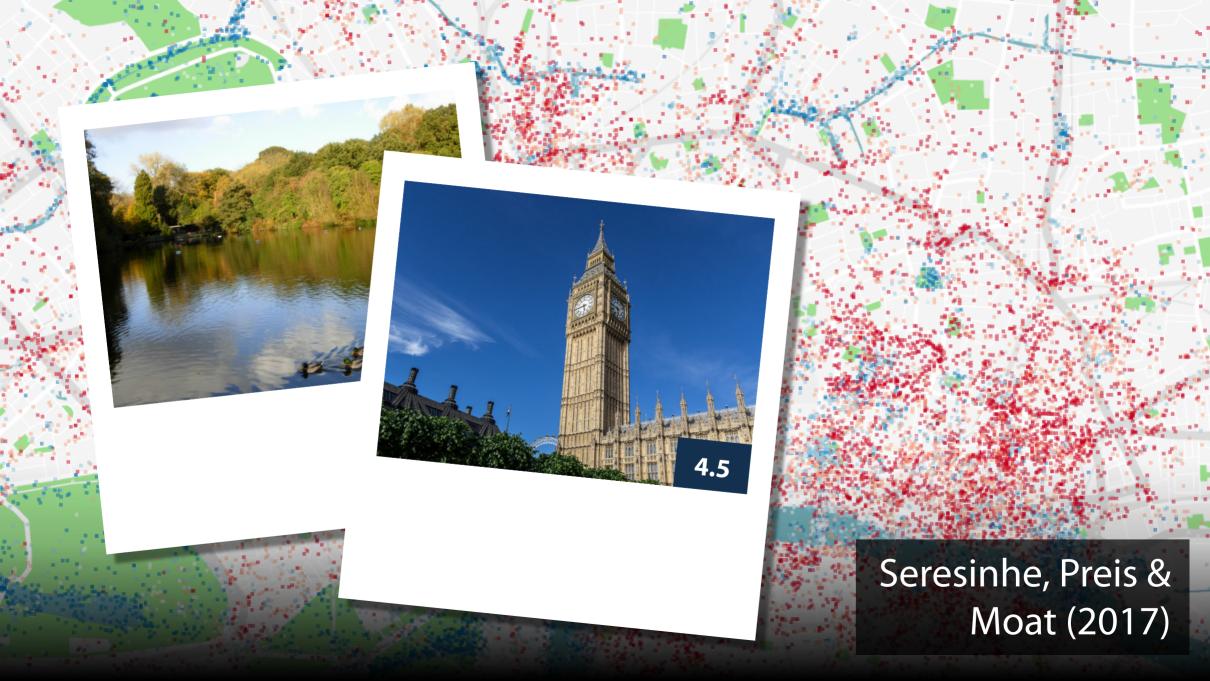
Trees

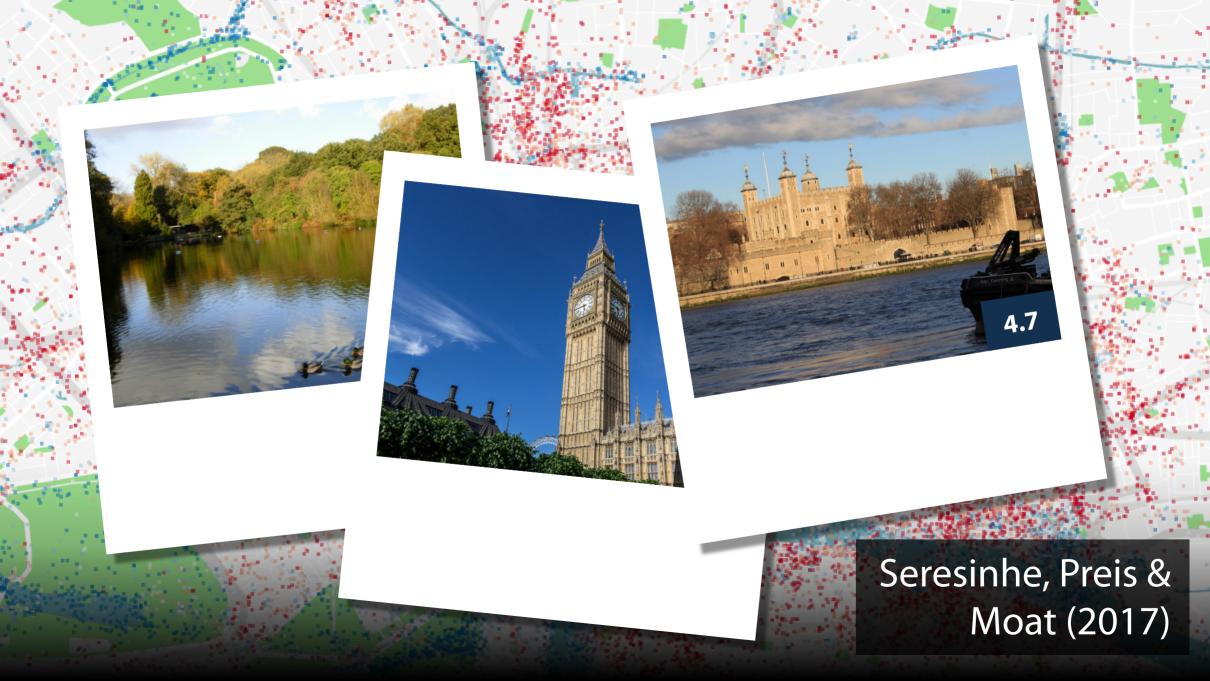
Grass

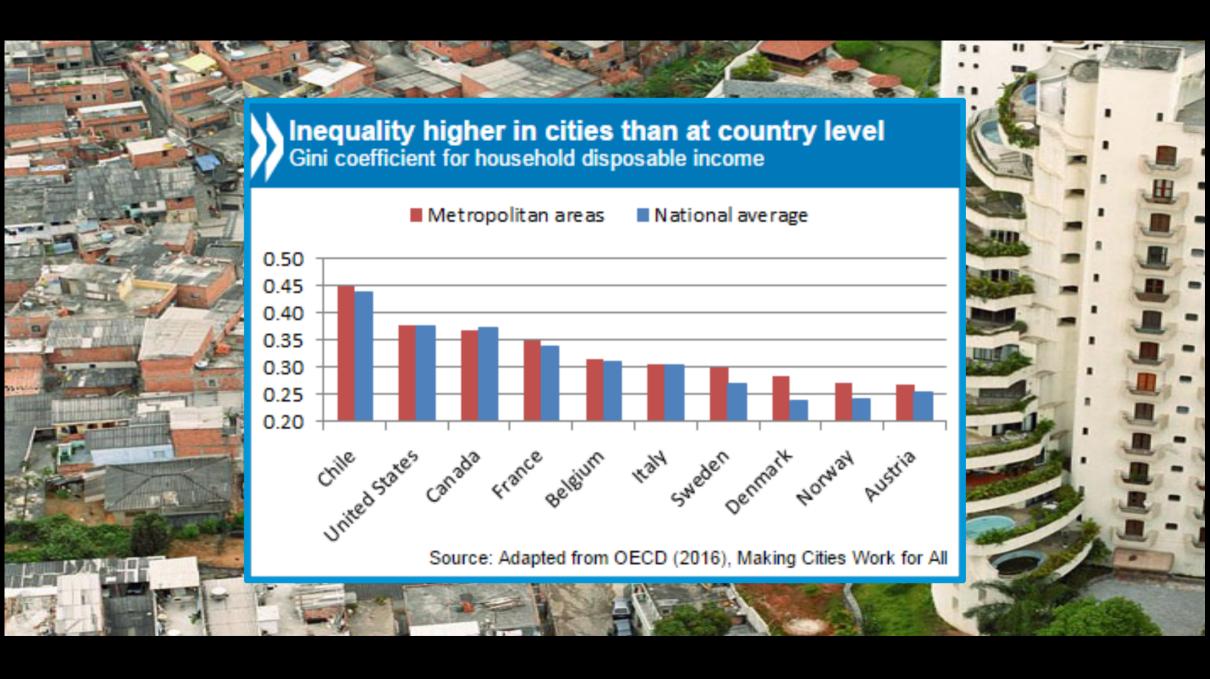
& Moat (2017)











Making Cities Work for All

OECD

DATA AND ACTIONS FOR INCLUSIVE GROWTH

How do we monitor inclusive growth in cities?

Policies for more inclusive growth in cities need to be supported by a solid evidence base. Measuring inclusive growth in cities, however, is no easy task, mainly for two reasons. First, inclusiveness filters through many dimensions beyond income and any measurement of it needs to include a wide array of variables, such as jobs, education, health or environment. However, such data are very scarce at the city level, even in advanced economies. Recent OECD work has mapped well-being outcomes according to 11 dimensions (material conditions and quality of life), both in countries and within countries in the 395 subnational OECD regions (OECD, 2011; 2014b). Building on the

MAKING CITIES WORK FOR ALL: DATA AND ACTIONS FOR INCLUSIVE GROWTH © OECD 2016

1. CITIES AS LABORATORIES FOR INCLUSIVE GROWTH - 19

How's Life in Your Region framework, Chapter 2 of this report sets about filling the evidence gap by providing data on selected well-being outcomes at the metropolitan spatial scale. These data allow a comparison of how OECD cities fare on income, jobs, education, environment and income inequality. But much still needs to be done to improve the availability of statistics at the city level. Alternative sources of data – such as administrative records, open government data and big data – will help overcome the current sampling limitations of national household surveys by increasing the amount of data on households and individuals at smaller geographical scales, which can then be aggregated up to the geography of interest.

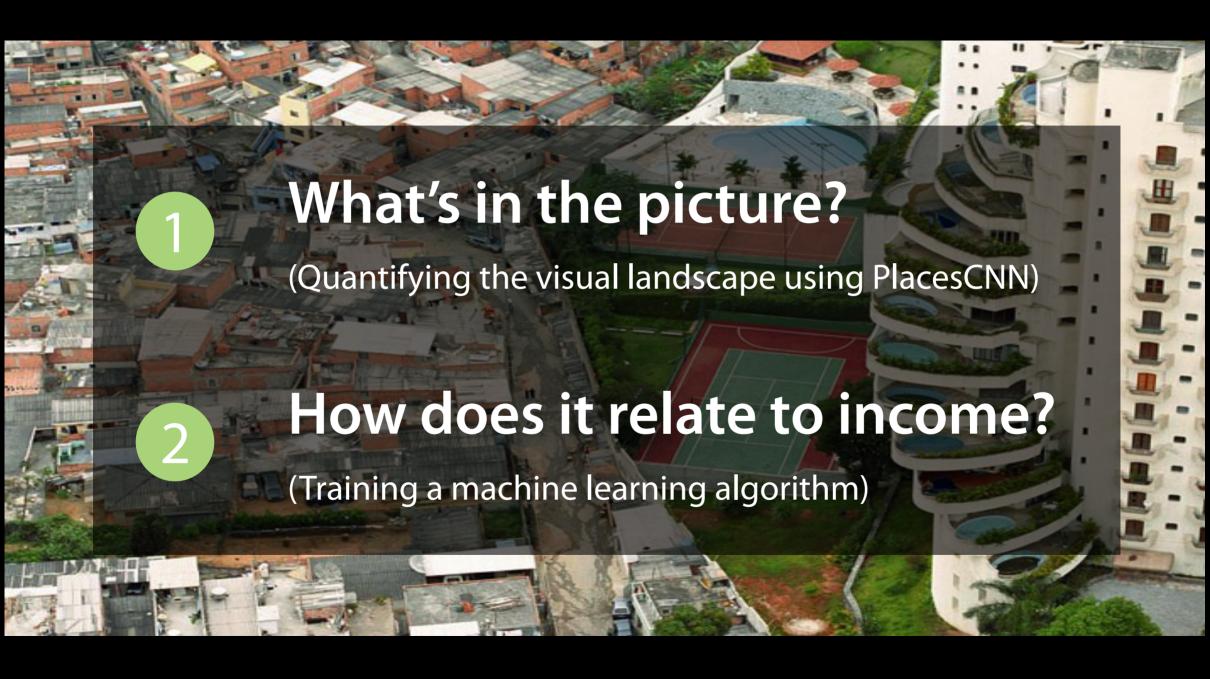
Second, measuring inclusive growth in cities requires taking into account several

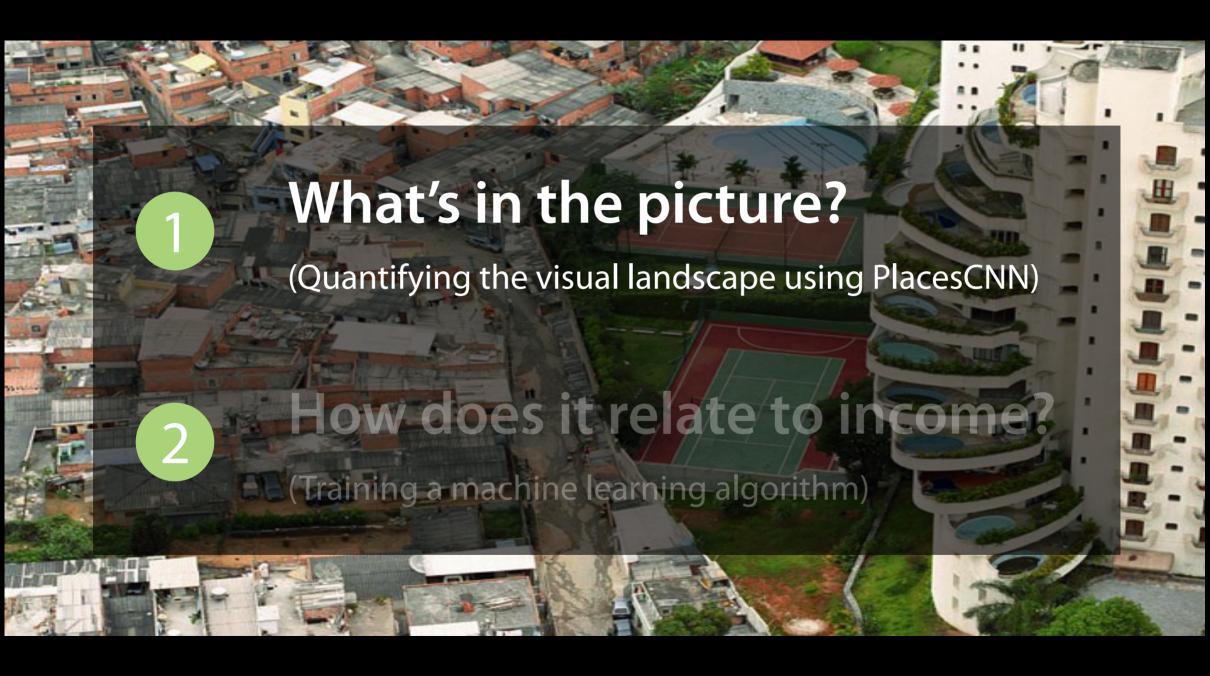
Using Google Street View pictures

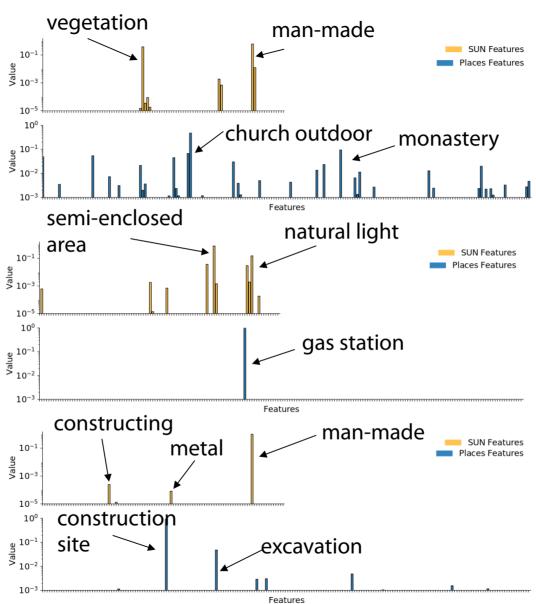
Which ones correspond to highest / lowest income areas?

Using Google Street View pictures

Which ones correspond to highest / lowest income areas?

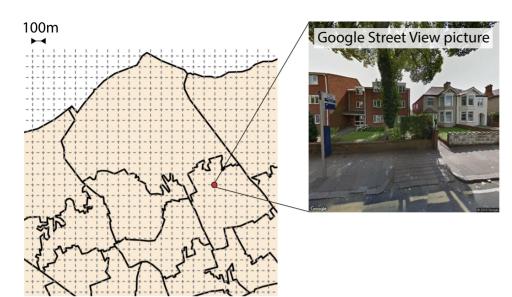


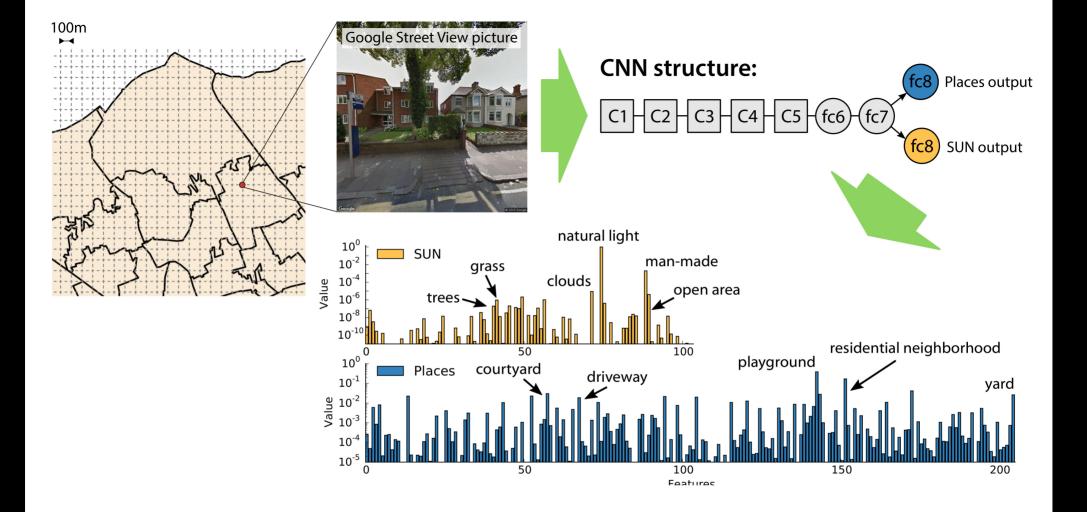


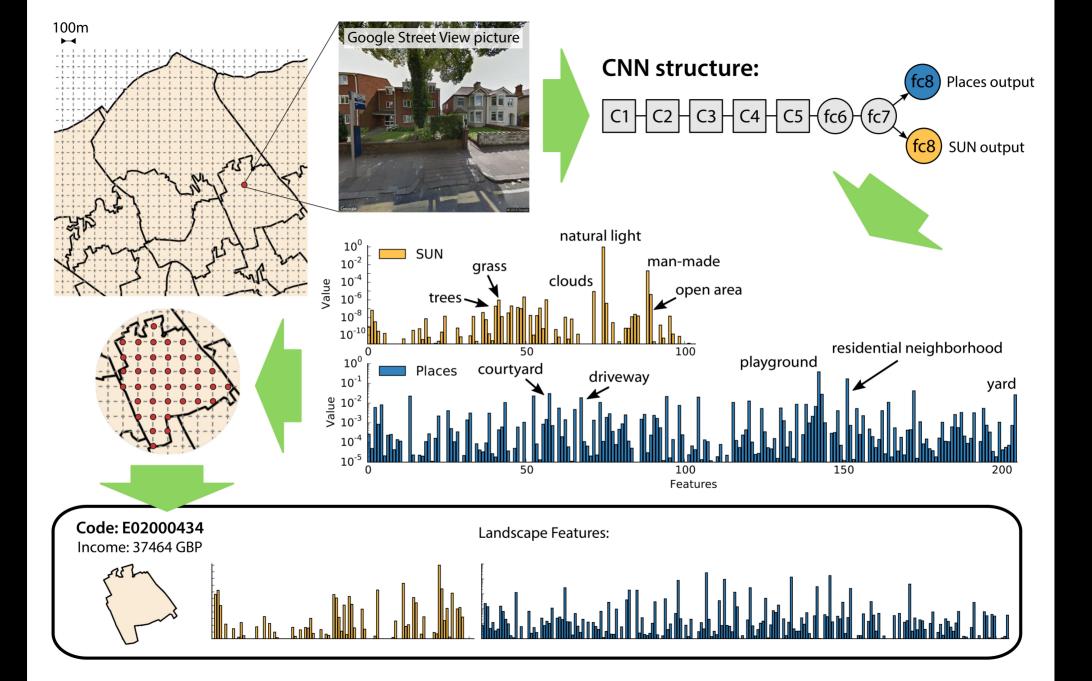


Places CNN

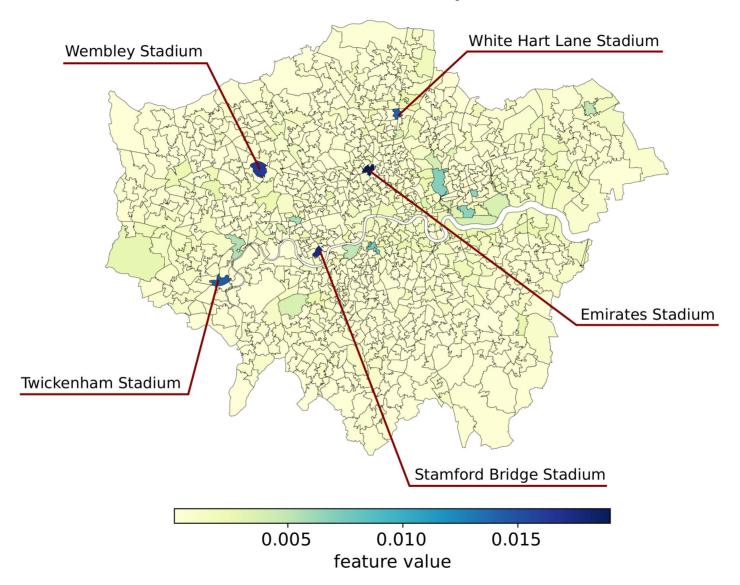
MIT



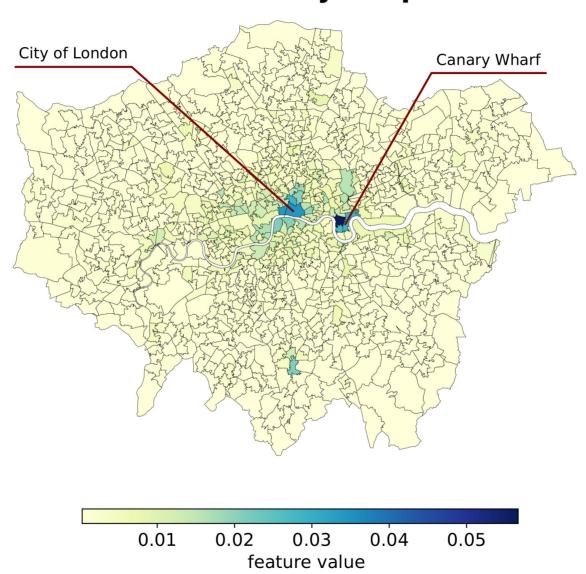




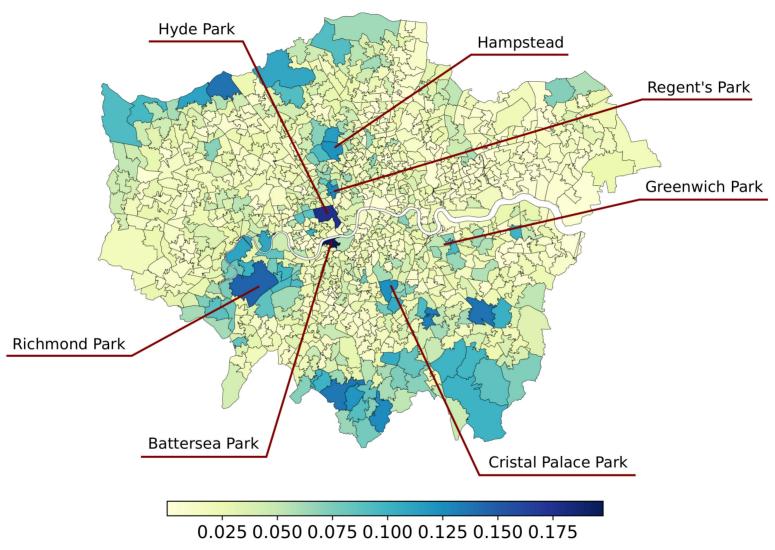
Feature: Stadium/football



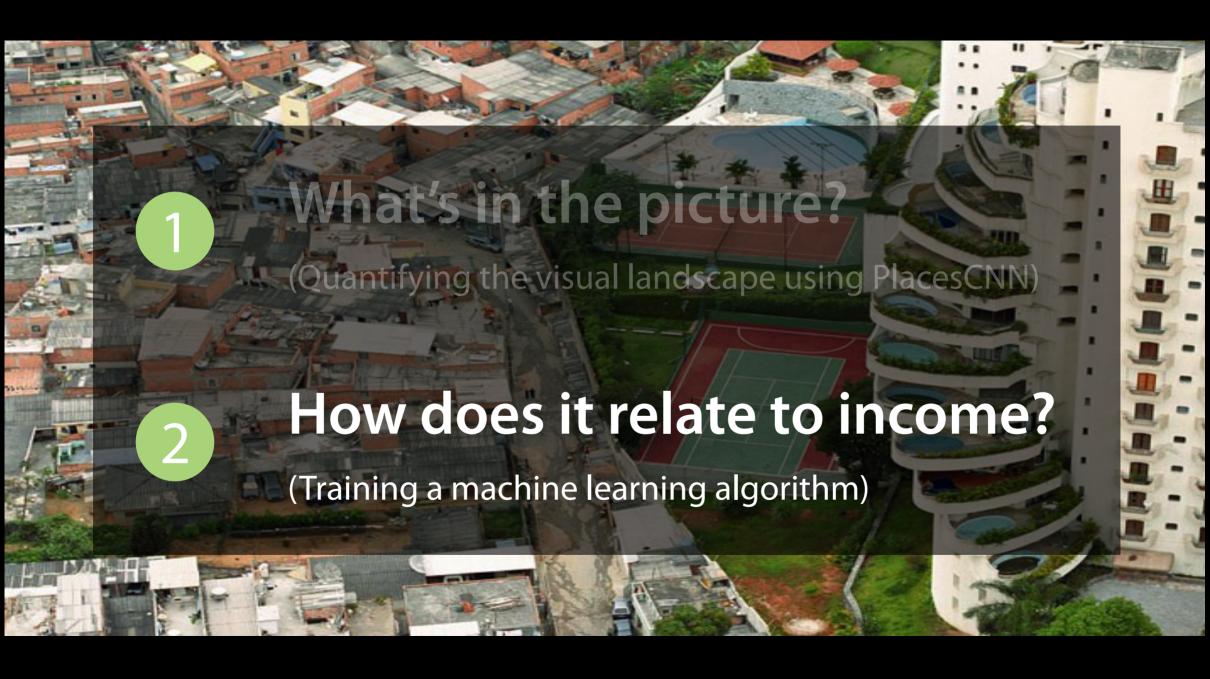
Feature: Skyscraper



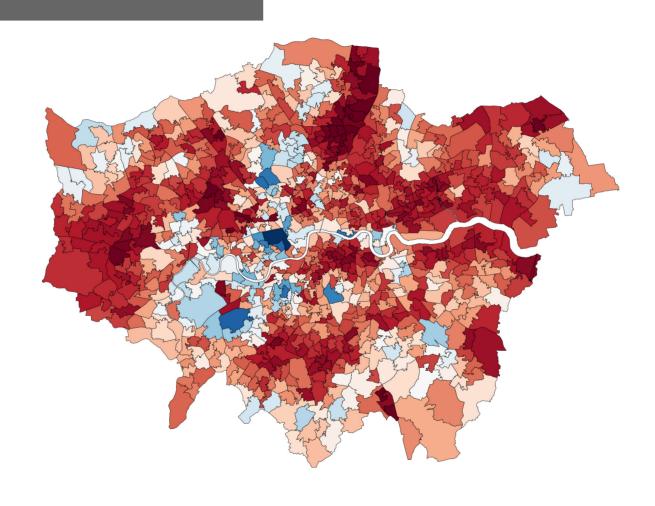
Feature: Trees



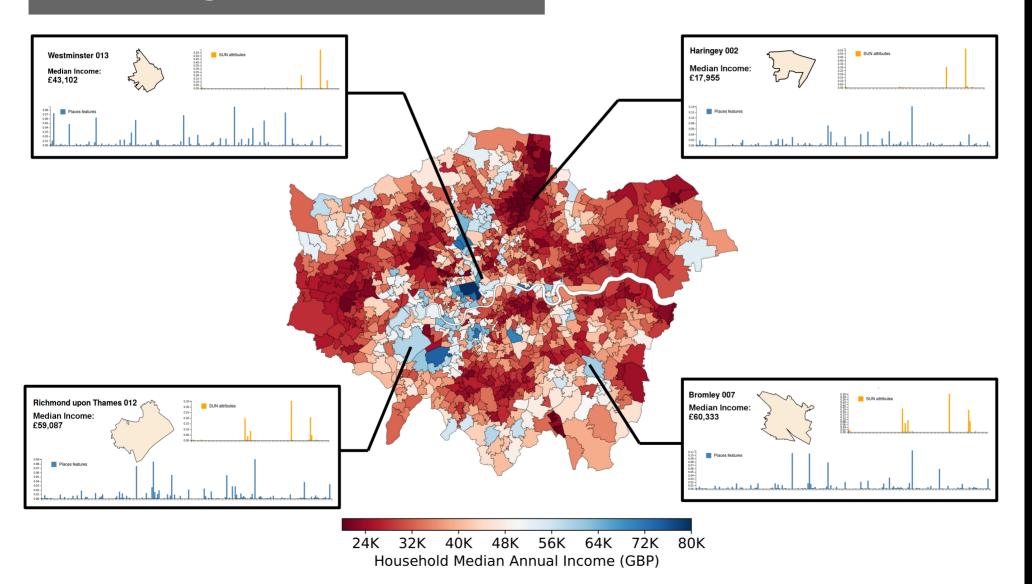
feature value

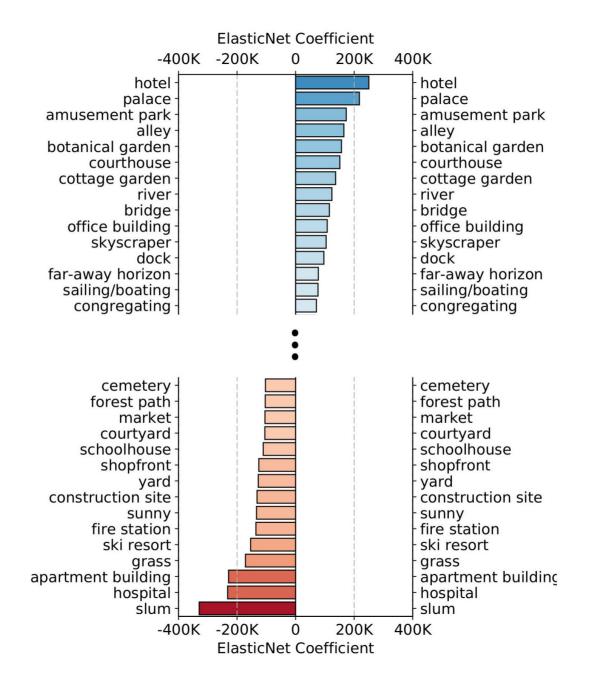


Income in London



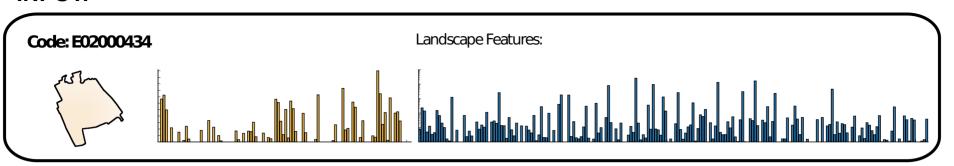
Training an elastic net

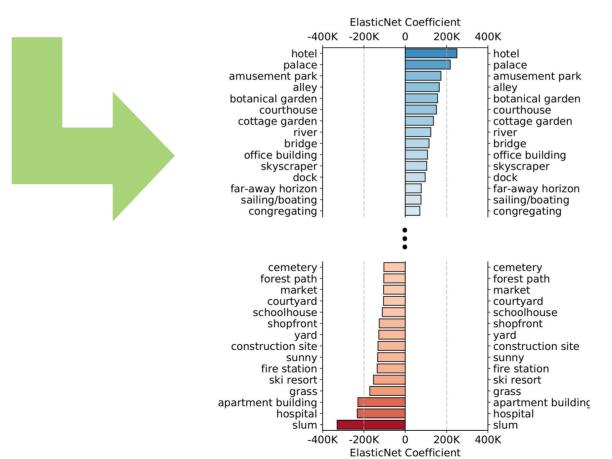




+ Income

INPUT:





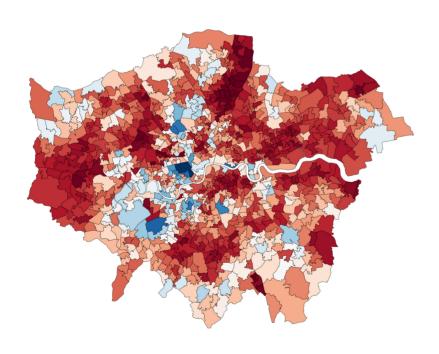
OUTPUT:

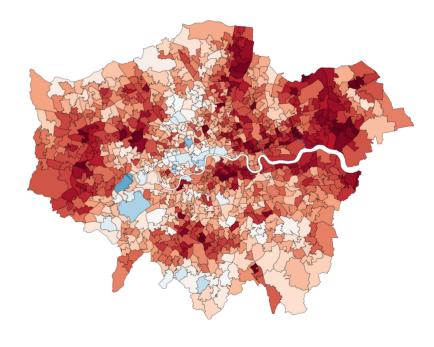
Predicted income: **38153 GBP**

London

Observed

Predicted

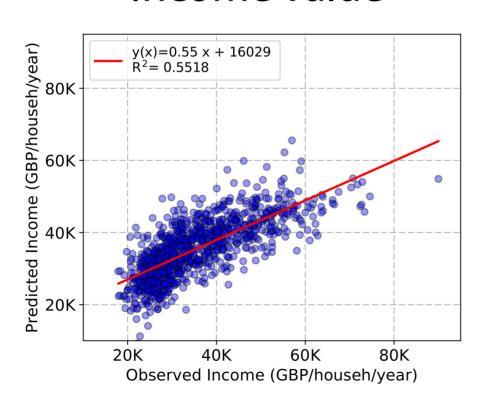




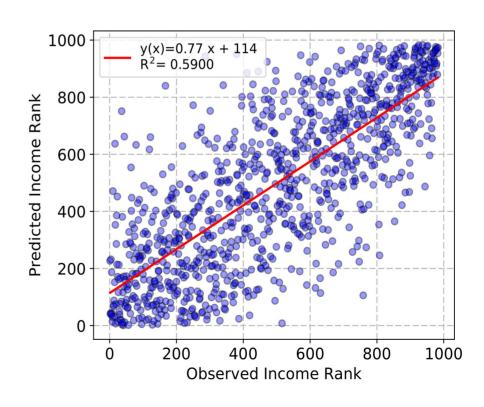
24K 32K 40K 48K 56K 64K 72K 80K Household Median Annual Income (GBP)

Prediction Accuracy

Income Value



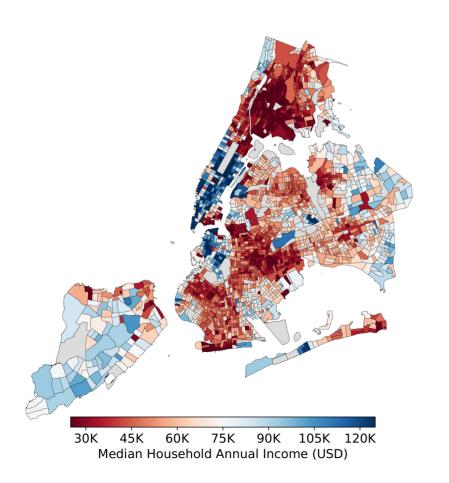
Income Rank

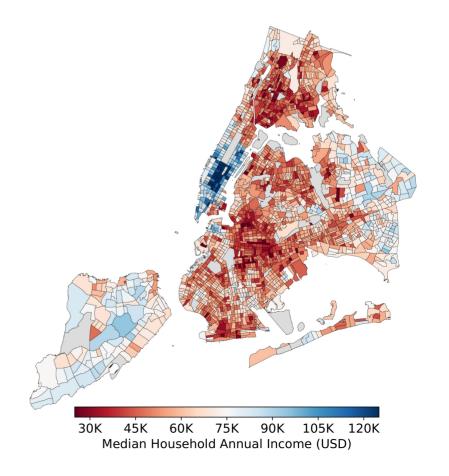


New York

Observed

Predicted

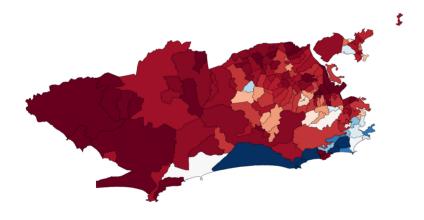


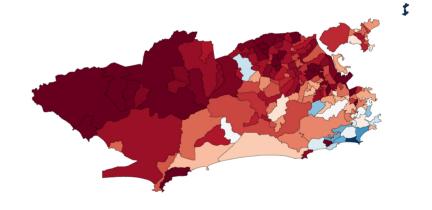


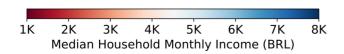
Rio de Janeiro

Observed

Predicted



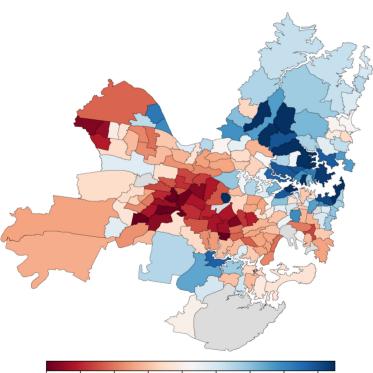




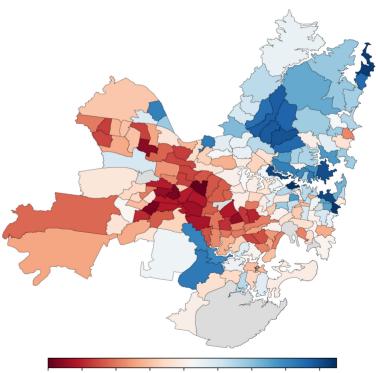
Sydney

Observed

Predicted



800 1000 1200 1400 1600 1800 2000 2200 2400 Household Median Weekly Income (AUD)

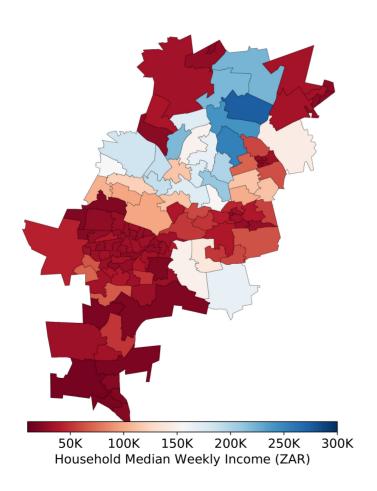


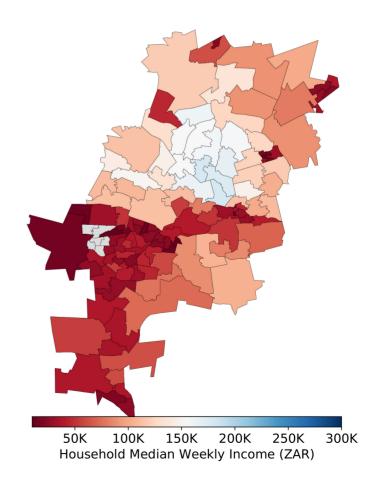
800 1000 1200 1400 1600 1800 2000 2200 2400 Household Median Weekly Income (AUD)

Johannesburg

Observed

Predicted

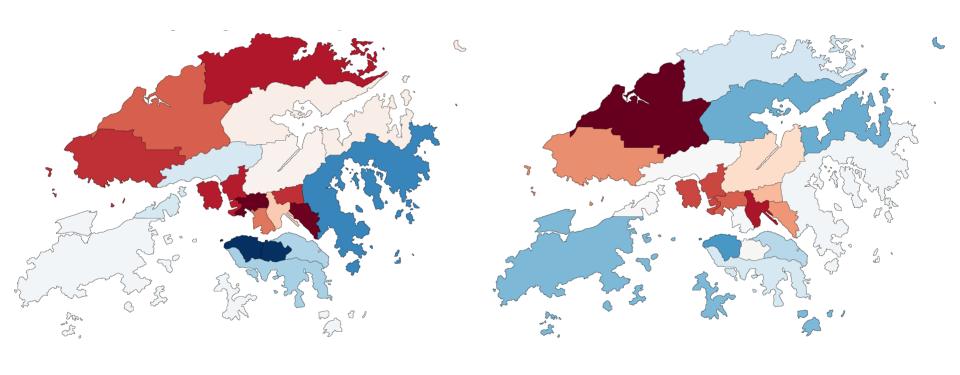


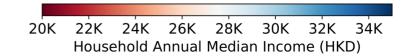


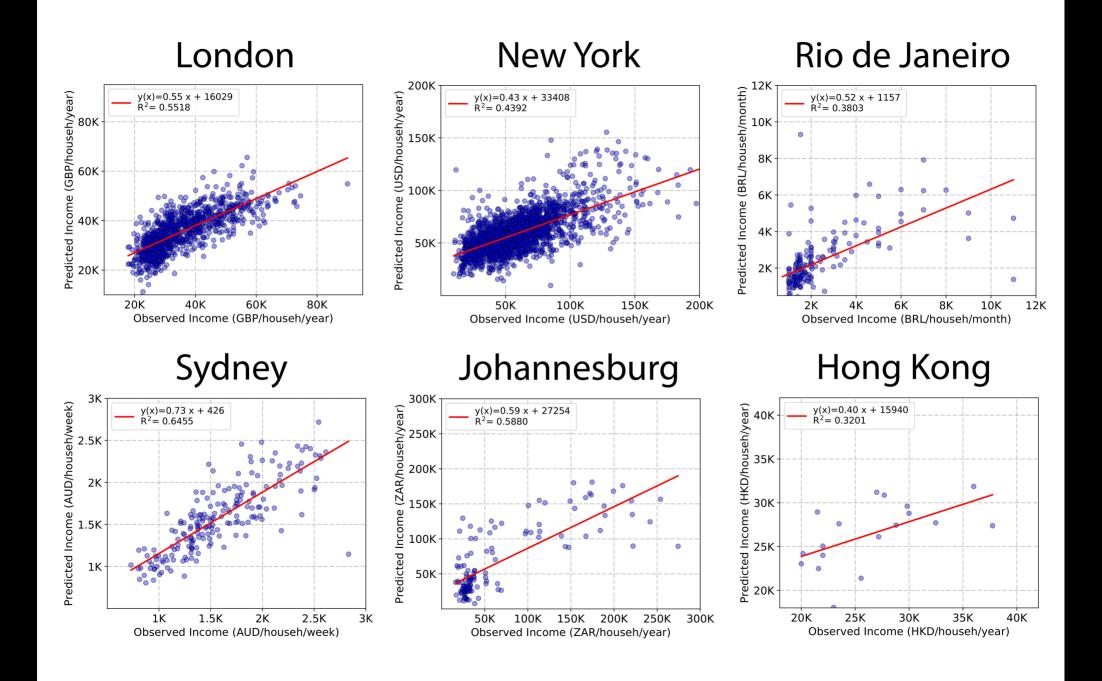
Hong Kong

Observed

Predicted







The Alan Turing Institute

Engineering and Physical Sciences Research Council

