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Abstract

Urban trees provide a wide range of environmental, social and economic
benefits [29], such as improving air quality and are known to be associated
with lower crime levels and greater community cohesion. In collaboration
with ONS Natural Capital [40], we have developed an experimental method
for estimating the density of trees and vegetation present at 10 metre
intervals along the road network for 112 major towns and cities [30] in
England and Wales.

Our approach uses images sampled from Google Street View as input
to an image segmentation algorithm as to derive a percentage vegetation
density map for the road network of an entire city. The developed system
is built on recent advancements in the field of deep learning for semantic
image segmentation.

This article reports on the effectiveness of our approach for deriving
a city- wide geospatial vegetation indicator, starting with the robustness
of our initial attempts at identifying green vegetation in arbitrary scenes,
through to evaluating models of increasing complexity and finally the use
and validation of deep image segmentation neural networks for visual scene
understanding.
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Introduction

Urban trees provide numerous social, environmental and economic benefits. In a
recent study produced by the Centre for Ecology and Hydrology for the Office
for National Statistics (ONS) Natural Capital Accounts [35], the UK’s trees were
estimated to remove 1.4 million tonnes of air pollutants in a single year, resulting
in an annual saving of £1 billion in avoided health damage costs [43]. In another
study, London’s 8.42 million trees have been estimated [32] to remove 2,241
tonnes of pollution per year, which in addition to other services, is estimated to
provide £132.7 million in annual benefits.

Various tree valuation methods [34] have been devised to consider the social and
economic benefits trees provide to a community, the environment and economy
as a whole. The objective of these methods is to attempt to derive a value that
goes beyond replacement cost so that trees are considered as assets rather than
liabilities. Although tree valuation methods may be crude and vary in the type
and number of benefits they attempt to quantify, recognising the positive impact
of trees is important for policy-making and urban planning.

Before attempting to quantify the benefits of street trees in urban areas, it
is of course necessary to understand exactly where trees and vegetation exist.
When considering street trees alone, one would need to consider the entire road
network, which is a daunting task. Our project attempts to solve this problem
by making use of automated tree detection procedure coupled with street-level
image data.

The result of this work is a consistent methodology that can be used to augment
existing tree valuation approaches, with the main benefit being the capability
to assess urban vegetation from a remote location. In addition, our approach
may be used in combination with more established remote sensing or earth
observation techniques such as the use of satellite image data.

To estimate the benefits of trees in an area, it is first necessary to build an
inventory, which can then be used for geospatial analysis. Building a tree
and vegetation inventory can be achieved in several ways, including traditional
surveying and community-based crowdsourcing through to the use of satellite
data to build wide-area vegetation indices and local-area automated tree crown
detection, which may also include the use of aerial photography.

We are specifically interested in a scalable, automated and consistent method-
ology, which can be used for the generation of a geospatial vegetation dataset.
Furthermore, the methodology should be robust to the seasonality of trees, their
species-specific characteristics and the features of the urban environments in
which they grow.

In collaboration with the ONS Natural Capital team, we set out to explore the
question: Can a national urban vegetation index be generated using computer

vision and machine learning techniques?
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This project has been developed in three phases, starting with the development
of an image processing pipeline, further development and improvements to
vegetation detection methods and finally an evaluation of the developed method,
which in turn comprises of three sub-studies designed to evaluate the approach
in different settings. This article focuses on the evaluation of our methods.

When starting this project, we considered several different approaches. One of
our main requirements is to be able to generate an urban vegetation dataset in an
automated, scalable and consistent way. Therefore, an obvious avenue of research
would likely include some form of satellite image processing, from which we
would focus on developing object detection methods to identify individual trees
and image segmentation methods for large areas of urban woodland. However,
there already exist (commercial) tree datasets, which have been derived from
aerial sources. Most notably, Bluesky’s National Tree Map (tm) [18] provides
a detailed national tree survey and has been used as the basis for numerous
studies to date.

Figure 1: A high density residential area comprised of predominantly non-publicly
accessible (or visible) vegetation. Images copyright Google.

Instead, we decided to focus on the detection of amenity (street) trees and
vegetation from the point of view of a pedestrian. Our aim is to account for
urban vegetation that is (visibly) accessible from ground level, excluding trees
obscured from view in private areas. Furthermore, we have focused on vegetation
that surrounds the urban road network since road traffic is a major source of air
pollution.

Based on this direction, we implemented a proof of concept using images obtained
from Google Street View API [16], Open street map road network data [17]
and a simple colour thresholding method to identify areas of green in each
street-view image. This initial proof of concept was designed to demonstrate
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our idea, which we later discovered to be similar to research behind the MIT
Treepedia project [41, 10, 11]. This similarity is purely coincidental: our choice
of Google Street View imagery, road network data and initial image thresholding
method was primarily selected with rapid-prototyping in mind, based on existing
practical experience of Google’s APIs, open street map data and prior-experience
of vegetation detection methods in the horticulture domain.

To assess the performance and feasibility, three separate studies have been con-
ducted, from which the aim is to demonstrate the effectiveness of the vegetation
detection algorithm in different contexts.

In the first study, the performance of several different models has been evaluated
in the context of a pixel-wise image segmentation task.

Evaluating the ability of the model to classify pixels as belonging to vegetation
or not in the context of a pixel-wise image segmentation task will demonstrate
the performance of the approach as a binary classifier. The intention with this
part of the evaluation will be to compare and optimise alternative models.

The second and third studies in this article evaluate the performance of the
selected model in a geospatial context, covering the model’s higher-level ability
to estimate and rank LSOA regions by vegetation density and finally the model’s
ability to quantify the presence of vegetation and trees at street level.

Evaluation 1: Street-scene image segmentation

Given as input an arbitrary street-level image, the objective of the model is
to determine the quantity of vegetation present in the scene. Specifically, the
task is to determine the number of pixels belonging to the vegetation class. A
summary of visible vegetation density can then be defined as the ratio of pixels
belonging to the vegetation class.

In light of the current research interest in autonomous cars, there are a num-
ber of street-level image segmentation benchmark datasets. In particular, the
Cityscapes [01], ADE20K [02], Mapillary Vistas [12] and most recently, Apol-
loscape [13] datasets are of particular interest, since they provide high-quality
ground-truth labels for urban scenes, covering a range of categories including trees
and vegetation, cars, people, buildings and so on. For this study, the Mapillary
Vistas dataset has been selected to evaluate model classification performance.
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Figure 2: An example training instance from the Mapillary Vistas dataset [12]
overlaid with tree, sidewalk and car labels. Image copyright Mapillary.

The Mapillary dataset consists of 25,000 street-level images captured using a
variety of cameras from around the world. Pixels in each image have been labelled
as belonging to 1 of 100 possible categories describing the various components
present in urban scenes. The dataset has been selected for use due to its high
level of quality derived from a two-stage quality assurance (QA) process [12].

In the context of our research, the primary objective is to identify the vegetation
class, of which the Mapillary dataset contains a diverse range of instances covering
numerous species obtained in each of the four seasons.

In this study, only Mapillary images with a standard 4 to 3 aspect ratio have
been used, resulting in a dataset of approximately 10,000 street-level images.

First approach: Green pixel L*a*b* threshold

Our first approach at pixel-wise vegetation classification is based on the obser-
vation that vegetation tends to be green (at least in the spring and summer)
and is based on findings from the plant phenotyping domain [03], in which it is
possible to segment plant leaves according to shade of green.
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The input (RGB) image is first converted to L*a*b* [36] colour space. By
projecting an image to L*a*b* space, it is possible to separate colour into a
three-dimensional plane, in which L* corresponds to the luminosity or lightness
of the image, a* corresponds to green to red, and finally, b* corresponds to blue
to yellow.

Figure 3: RGB to L*a*b* colour space luminosity intersections. The colour
space is linearly separable and stable with respect to changes in lightness (L*)

Figure 3 illustrates different cross sections from the L*a*b* colour space from
three levels of increasing lightness. Any region in the top-left quadrant (a∗ <

0 < b∗) is considered to be green. Note that the shade of green will remain
relatively static with respect to the lighting level. As such, it should be possible
to identify “greenness” in a way that is robust to varying lighting conditions.

By restricting the a* parameter to lie within a threshold, A1 6 a 6 A2 it is pos-
sible to segment an image by labelling an individual pixel as green (vegetation) if
its corresponding a* value is within the threshold range. In the plant phenotyping
domain [03], researchers have reported varying threshold parameters, which can
be used for leaf segmentation in lighting-controlled images of plants. In the
plant phenotyping domain [03], a threshold of −25 6 a 6 −15 is reported as an
effective range for extracting vegetation foreground in images of tobacco plants.
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Figure 4: Filtering green pixels from a Google Street View image with a*
threshold: −20 6 a 6 −15. Street View image copyright, Google.

Following the same methodology, it is possible to isolate or filter green pixels
in street-level imagery. In the absence of ground-truth data, the early proof of
concept of our method used a static threshold derived empirically by means of
an interactive tool as illustrated in Figure 4.

The Mapillary labelled image dataset allows for the possibility to explore the
threshold parameters in greater detail.
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Figure 5: Visualising vegetation pixels (coloured region) and non-vegetation
pixels (grey) in the Mapillary dataset. There exists an optimal set of threshold
parameters A1 6 a 6 A2 ∧ B1 6 b 6 B2 with respect to the pixel classification
error.

Figure 5 illustrates the range of a* and b* pixel colour values present in the
Mapillary dataset. Each point represents an individual pixel from a random
subset of the image dataset coded as the actual colour represented by the a*b*
pair. Note that this sample includes values with different l* (lightness) and as
such, exhibits slight variations. Only pixels belonging to the vegetation class
have been retained here, with the remaining classes colour coded as grey to
illustrate the overall feature space. The vertical lines correspond to the optimal
A1 (left), A2 (right) and B1 (bottom), B2 (top) parameters.

Of particular interest is the range of colour belonging to the vegetation class.
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While most pixels are green (not shown here), there is a large number of non-
green pixels. For example, yellow or red pixels may be attributed to seasonality
and tree species, brown may be attributed to autumn and tree trunk, while blue
may be attributed to sky behind leaves and trunk captured in less fine-grained
segment labelling.

Figure 6: Balanced accuracy surface (top), Sørensen–Dice score (bottom) for
fixed B1 6 b 6 B2 and variable A1 6 a 6 A2

Altering the A1 and A2 thresholds has an effect on the accuracy of the model.
Specifically, increasing A2 will capture more red pixels, potentially increasing
the false positive rate, whilst decreasing A2 will increase the false negative rate.
Therefore, there is an opportunity to optimise the threshold values to maximise
classifier performance.

Figure 6 shows the resulting gradient expressed as class balanced accuracy (top)
and Sørensen–Dice coefficient (F1-score) (bottom) from a grid-search of all
possible A1, A2 parameter pairs where A1 6 A2. The right-hand side images
show the same result in another colour scheme as to emphasise the gradient. B1

and B2 (blue to yellow) have been clamped to 0 and 12 respectively.
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Figure 7: A1 6 a 6 A2 inverted RMSE surface: error increases after A2 > 0

It is clear from the classification accuracy surface in Figure 6 that there is an
optimal point before A1 approaches 0. Altering the A2 threshold has little effect,
until it approaches 0 and the threshold region narrows. This can be seen with
greater clarity when observing the (inverted) RMSE error surface from the same
grid search as shown in Figure 7. The performance of the model rapidly decreases
with A2 > 0. In fact, the optimal A1, A2 parameters in this context are -31,

-6 respectively, which is close to the range reported for detecting tobacco plants
in plant phenotyping domain [03].

In addition to the A1, A2 (green to red) thresholds, the model can be extended
by including B1, B2 (blue to yellow) thresholds, such that it is possible to exclude
turquoise blue and green.

We have made use of Bayesian parameter optimisation [19], using the Matthews
Correlation Coefficient [04] (MCC) as an objective function as to find an optimal
set of A1, A2, B1, B2 parameters with respect to pixel-by-pixel classification
error. Each set of parameters enumerated by the optimisation method have been
evaluated using the mean MCC validation score having performed two-fold cross
validation over the training data. Our resulting optimal L*a*b* threshold model
used to derive percentage vegetation for a single image is as follows:

N
∑

n=1

vegetationn

N

where N = Number of pixels in image, and:

vegetationn =

{

1, if − 31 6 a 6 −6 ∧ 5 6 b 6 57

0, otherwise

12



This model considers both a* and b* values for each pixel, resulting in a class
balanced accuracy of 62% over the ground-truth data. Using the a* alone, our
best model (A1 = −31 A2 = −11), found from an exhaustive grid search, could
only reach 55% accuracy. Performance of all models will be summarised later in
this article.

Second approach: Random forest vegetation mask

The a*b* threshold method can be generalised to the problem of locating a
binary mask such that a pixel is classified as vegetation if its a*b* values are
contained within the mask region. In the case of the a*b* method discussed
previously, this region is rectangular in nature. Therefore, it is possible that
the a*b* model can be further improved by allowing for a greater degree of
expressiveness: the optimal mask may be elliptic, which appears to be the case
with respect to the density of positive (vegetation) examples in the L*a*b* colour
space.

Given as input the two a*b* features, a random forest model has been trained
to classify pixels into vegetation and non-vegetation classes. A random forest
has been selected primarily due to the minimum number of hyper-parameters,
of which the number of estimators and estimator maximum depth have been
selected using Bayesian parameter optimisation with the MCC objective function
yielding a minimal model with just 11 estimators restricted to a depth of 14.

Figure 8: Generation of an elliptic L*a*b* bitmap mask by thresholding random-
forest class probability

Having trained the model, it is then possible to enumerate all possible (a*,
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b*) combinations to produce a matrix containing the model’s confidence a
pixel would belong to the vegetation class with respect to its a* b* feature.
Figure 8 shows a visualisation of the class confidence matrix for all a* b*

combinations and a bitmap decision mask which has been derived by applying a
class confidence threshold. Note that the model has been fit to an elliptic (as
opposed to rectangular) region of the colour-space. Figure 9 illustrates the same
confidence matrix, emphasising confidence around the greener regions of the
colour space.

Figure 9: Random forest: confidence a pixel belongs to the vegetation class given
it’s a* b* value

To extract an elliptic-shaped binary mask, the class confidence of the model
has been clipped above a specific threshold of 0.32, which has been found by
enumerating all possible (discretised) threshold values within [0, 1] whilst
looking to maximise the mask’s MCC score over the ground-truth image data.
The maximum MCC score located with this method was 0.26 which approximates
the point at which precision equals recall. A higher threshold value of 0.32

has been selected in favour of recall and a higher R2 with respect to predicted
compared with actual percentage vegetation over all images in the ground-truth
data.

Both the random forest a* b* mask and linear threshold method described so
far are superior to thresholding pixels using the a* channel alone. However,
despite our best efforts, we have not been able to significantly improve on the a*

b* threshold method beyond a slight increase in R2 with respect to predicted
compared with ground-truth percentage vegetation. Having experimented and
optimised a number of different approaches, at this point we consider the
predictive power of the L*a*b* feature in isolation to be exhausted.

So far, three different models have been developed by thresholding the L*a*b*

14



colour space. First by the a* channel, second both a* and b* channels and finally
a non-linear a*b* mask-based model generated with a random forest.

The use of a random forest to generate a mask is computationally efficient and
decoupled from the machine learning method. The bitmap mask created from
the thresholding method described previously can later be loaded as a boolean
matrix from which future instances can be classified. Thus, the random forest
model may be discarded. Outside of the scope of this project, the bitmap mask
approach may be of use when an approximate, high-performance classification
scheme is required.

Whilst computationally efficient, the method is restricted to the very limited
information provided by the L*a*b* colour-space features. Specifically, the
method may be better suited to more controlled conditions such as in the plant
phenotyping domain in which the visual complexity of an urban environment
would be absent.
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Figure 10: L*a*b* colour space for four classes in the Mapillary dataset

Figure 10 illustrates the main drawback of the method with respect to scene
complexity. Each plot represents the colour-space distribution for four specific
classes in the Mapillary dataset, namely: vegetation, cars, buildings and sky.
Each of the images have been divided up into four quadrants, delimited by a* =

0 (vertical) and b* = 0 (horizontal). Although each class exhibits a somewhat
different colour-space distribution (lots of red cars, blue sky), there is a high
degree of overlap with respect to the a* b* co-ordinates.

In other words, it is not possible to differentiate between green cars and green
trees by using the L*a*b* features in isolation: the models developed using only
these features, whilst exhibiting a strong correlation with respect to predicted
compared with actual vegetation exhibit high false positive rates.
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Third approach: Deep image segmentation

Taking a leap forward, the current state-of-the-art in semantic image segmenta-
tion has been due to recent advancements in deep learning and convolutional
neural networks. Of particular relevance to this work, recent research in the
specialised domain of street-level image segmentation has resulted in the devel-
opment of a number of sophisticated models including SegNet [05], PSPNet [06]
and DeepLabV3 [07].

We have opted to use PSPNet [06] - Pyramid Scene Parsing Network - a current
state-of-the-art image segmentation network, to segment street-level images into a
number of different classes, including cars, buildings, sky, people, vegetation and
so on. Specifically, our project has made use of a Chainer [08, 25] implementation
[20] of PSPNet using the pre-trained Cityscapes [01] and ADE20K [02] weights
from the author’s original Caffe implementation [21], which came first place in
the ImageNet scene parsing challenge 2016 [09]. We have chosen to use PSPNet
due to its high performance in existing street-level image segmentation tasks.

Using the Mapillary Vistas dataset [12], The performance of the PSPNet models
pre-trained on both Cityscapes and ADE20K have been evaluated. Both ADE20K
and Cityscapes models contain a vegetation class (amongst many others). As
such, only the model’s ability to identify vegetation has been evaluated here.

For each image, we evaluate the performance of the PSPNet using a number
of metrics that assess the model’s ability to classify pixels as vegetation or
non-vegetation. For comparative purposes, we also include the performance of
our early L*a*b*-based prototypes.

Table 1: Progressive improvement of our three models and later
evaluation of the PSPNet pre-trained models. BACC = Balanced
accuracy, Pre/Rec = Precision or recall, F1 = Sørensen–Dice co-
efficient, MCC = Matthews correlation coefficient, τ = Kendall’s
tau.

Model BACC Pre Rec F1 MCC R2 τ

PSPNet (city) 90% 0.66 0.87 0.75 0.72 0.83 0.77

PSPNet (ade20k) 85% 0.82 0.73 0.77 0.74 0.83 0.76
Random forest 62% 0.48 0.29 0.36 0.31 0.25 0.32

Lab (a* b*) 62% 0.47 0.28 0.35 0.29 0.20 0.28
Lab (a*) 55% 0.33 0.14 0.19 0.15 0.04 0.15

We found that (as expected) the vegetation classification performance for the
PSPNet model pre-trained on the Cityscapes and ADE20K data is vastly superior
to the three L*a*b* threshold methods.

It should be noted that the L*a*b* threshold methods have been optimised and
evaluated against approximately 10,000 images in the data. That is, the (L*a*b*)
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models have been fit perfectly to the data, and likely have been overfitted.

On the other hand, the PSPNet models have been trained on completely different

datasets (Cityscapes and Ade20k respectively). Subsequently, the results of the
PSPNet presented here are indicative of the expected performance on the Google
Street View imagery used in our production deployment.

Figure 11: Comparison of vegetation segmentation methods, from left to right:
ground-truth (Mapillary data), PSPNet, Random Forest, a* threshold. Images
copyright Mapillary.

To further illustrate these results, Figure 11 depicts the segmentation labels
produced by the different methods. The first row consists of an easily identifiable
group of trees, which have been labelled nearly perfectly by the PSPNet model
and with some success by the random forest and a* threshold methods. The
second and third rows illustrate one of the main issues with the early L*a*b*
methods: Green vegetation will be less prevalent in autumn and winter months.
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The forth and fifth rows highlight another limitation of the L*a*b* method: not
all tree species are green and not all green objects are trees. The PSPNet model
is robust to all of these situations.

Figure 12: Actual compared with predicted percentage vegetation: our random
forest model achieves R2 = 0.25 vs R2 = 0.83 compared with both PSPNet
models

The objective of the method described here is to predict the percentage vege-
tation present in an image. Figure 12 illustrates the relationship between the
actual percentage vegetation compared with predicted percentage vegetation over
approximately 10,000 images in the dataset. The difference in performance, in
terms of R2 is quite remarkable given that the PSPNet models have been trained
to classify multiple object classes besides vegetation. So, given the impressive
PSPNet results, our early work focusing exclusively on L*a*b* thresholds is
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rendered obsolete.

In light of this, the remainder of this article and our final prototype system
have made use of the PSPNet pre-trained on the Cityscapes dataset, which has
shown to produce a class-balanced accuracy of 90% and 0.77 Kendall’s tau with
respect to actual compared with predicted percentage vegetation.

To summarise, we have so far described a vegetation classification model that
maps an arbitrary image to a single percentage vegetation index. The percentage
vegetation is defined as the ratio of pixels in the scene classified as vegetation.
Our early attempts at this problem relied on two features. Namely, the a* and
b* components of the L*a*b* colour space from which we created 3 models
of increasing performance based on the a* (green or red) feature, a* and b*
(yellow or blue) features, and finally, a random forest model, again using the a*
b* features.

Having reached the limits of the various models’ performance by means of hyper-
parameter optimisation, we turned our attention to more sophisticated detection
methods by considering the task at hand as a generic image segmentation prob-
lem. Having explored various options, we decided to trial an implementation of
PSPNet using highly-relevant pre-trained weights from a separate street-level
segmentation task. We found that the PSPNet model completely overshadowed
our L*a*b* space prototype in terms of classifier performance and as such,
have selected the PSPNet as the core component in our overall prototype. In
the sections that follow, we make use of percentage vegetation derived by the
(pre-trained) PSPNet model.

Evaluation 2: Comparison with Cardiff LSOA

percentage canopy cover from Natural Resources

Wales

Having evaluated the model’s effectiveness at identifying vegetation in street-level
images, we now attempt to compare the overall methodology with an existing
approach.

In 2006, 2011 and 2013, Natural Resources Wales (herein referred to as NRW)
conducted the world’s first nationwide urban tree mapping survey, covering 220
urban areas in Wales [26]. The survey has been conducted in three phases using
aerial photography captured from a survey plane, from which individual trees
have been identified using a “desk-based analysis”. The study has focused on
reporting tree crown cover for three tree sizes, categorised as small (3-6 metres),
medium (6-12 metres) and large (12 metres or more), in a variety of contexts
including, but not limited to, green open space, transport corridors, commercial
areas and woodland. Woodland data from the existing National Forest Inventory
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[14] has been used to augment the dataset, which we have obtained from the
NRW and Welsh Government Lle geo-portal [15].

In addition to a nationwide report, an auxiliary study was published [27] detailing
Cardiff’s urban canopy cover at Lower layer Super Output Area (LSOA) [28]
level from which the report also explores the relationship between green space
and the Welsh Index of Multiple Deprivation (WIMD) [37].

Figure 13: Cardiff’s urban woodland and trees - visualisation of the Natural
Resources Wales dataset

In preparation for this evaluation, the data obtained from the 2013 NRW study
have been pre-processed using QGIS [22]. Specifically, groups and locations of
trees from the Cardiff urban area have been extracted and merged with data
from the National Forest Inventory.
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Figure 14: Individual trees, groups of trees and areas of woodland from the
NRW dataset. Satellite imagery copyright Google

The dataset consists of polygons representing small groups of amenity trees and
larger areas of urban woodland from the NFI. In the original published data,
individual trees have been represented as points. For the purpose of this study,
these points have been expanded to circular polygons, where the circumference
of each circle corresponds to the average canopy size (4.5 metres, 9 metres, 1
metres respectively) as defined in the Town Tree Cover in the City of Cardiff
report from NRW.
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Figure 15: In addition to locations of individual trees, the NRW dataset includes
crown diameter

The resulting NRW dataset represents the current (and only, to our knowledge)
detailed inventory of urban trees in Cardiff. This geospatial data, along with the
tabular data provided in the original report, have been used here for comparative
purposes. However it should be noted that while the data obtained from
NRW is extensive (as illustrated in Figures 13, 14 and 15) and detailed, it
contains a number of false negatives and positives. This is likely due to the tree
labelling process and aerial image quality, which the report indicates was not
sufficient to detect tree canopy less than 3 metres in circumference, which is
more likely the case for trees growing along transport corridors (TRN in the
report). Furthermore, the report indicates that a ground-truth study to assess
the accuracy of the small, medium and large tree classification was not conducted.
Nonetheless, the data are extensive and represent the current state-of-the-art.

The Town Tree Cover in the City and County of Cardiff study [27] from NRW,
reports the percentage of tree crown cover for each LSOA in Cardiff in 2006,
2011 and 2013 respectively. The data from the 2013 study have been used here
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to illustrate the relationship between our street-view vegetation index and LSOA
canopy cover.

To conduct this study, 220,068 street-view images have been sampled from the
left-hand and right-hand side of the road at 10-metre intervals along the entire
Cardiff road network. We then extract the percentage vegetation from each
image using the methodology described previously to create a high-resolution
urban vegetation dataset. Using this street-level dataset, we then derive an
LSOA percentage vegetation index using the mean percentage vegetation present
for all images in each LSOA polygon.

It is important to note that the NRW study reports a percentage canopy cover
for an entire LSOA. Specifically, the ratio of combined tree crown area compared
with non-tree covered area for each LSOA polygon. In contrast, the LSOA
vegetation percentage produced by the methodology reported in this study
describes the observed vegetation at street level, as opposed to an aerial view.
As such, whilst the variables under study are different, we expect to observe a
relationship between the two variables: we assume that both variables (aerial
canopy cover and street-level vegetation) are both a proxy indicator for biomass.

Figure 16: NRW percentage Lower layer Super Output Area (LSOA) canopy
cover compared with Mean percentage LSOA street-view vegetation. Rˆ2 =
0.41.

At aggregated LSOA level, our street-level vegetation index is comparable with
the results presented in the NRW study. For each LSOA, there exists a linear
relationship between the percentage canopy cover reported in the NRW study
and our mean percentage street-level vegetation.

Figure 16 illustrates this relationship. From left to right, the first plot shows
percentage canopy and percentage street-level vegetation for each LSOA in
Cardiff. A clear relationship exists (with R2 = 0.41): higher reported levels of
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canopy cover in the NRW report coincide with higher levels of vegetation found
at street level with our approach. The second plot further demonstrates this
relationship by showing our percentage LSOA vegetation (y-axis) relative to the
order of percentage LSOA canopy (x-axis). This demonstrates that as percentage
canopy decreases, percentage vegetation at street level also decreases. The third
graph emphasises this observation by aggregating, and thus smoothing, the
percentage LSOA canopy and percentage vegetation into bins, each containing
mean vegetation for 10 LSOAs.

Figure 17: Natural Resources Wales Lower layer Super Output Area percent-
age canopy cover (left) compared with street-view LSOA average percentage
vegetation (right)

The same results can be visualised in the form of an LSOA hexagon [23] heatmap.
Figure 17 shows the density of Cardiff LSOA canopy cover from the NRW
data on the left, compared with the density of street-level vegetation from our
methodology on the right. Both approaches result in similar ordering of LSOA
tree density.

Aggregating further from LSOA to ward level, both approaches yield similar
results. Table 2 lists Cardiff wards, ordered by mean street-level vegetation.

Table 2: List of all Cardiff wards, ordered by our mean street-level
vegetation (SV mean) compared with percentage canopy cover from
the NRW data (NRW mean). The third row, Diff, simply shows
the difference between the two approaches, highlighting similar and
outlying wards.

SV mean NRW mean Diff

Pentyrch 0.47 0.10 0.37
Lisvane 0.32 0.26 0.06
Pontprennau Old St Mellons 0.30 0.19 0.12
Cyncoed 0.27 0.24 0.03
Whitchurch and Tongwynlais 0.24 0.16 0.08
Radyr 0.24 0.20 0.05
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SV mean NRW mean Diff

Llandaff 0.23 0.20 0.03
Creigiau St Fagans 0.22 0.15 0.07
Pentwyn 0.22 0.21 0.01
Penylan 0.21 0.17 0.04
Rhiwbina 0.21 0.15 0.06
Llandaff North 0.20 0.12 0.08
Llanishen 0.20 0.19 0.01
Fairwater 0.19 0.14 0.05
Trowbridge 0.19 0.12 0.06
Rumney 0.17 0.10 0.07
Heath 0.16 0.12 0.05
Ely 0.15 0.10 0.05
Llanrumney 0.13 0.12 0.01
Caerau 0.12 0.14 -0.03
Butetown 0.11 0.05 0.06
Gabalfa 0.11 0.11 0.00
Riverside 0.10 0.10 -0.01
Canton 0.09 0.10 -0.01
Plasnewydd 0.09 0.08 0.02
Grangetown 0.09 0.06 0.03
Splott 0.09 0.08 0.00
Cathays 0.08 0.11 -0.03
Adamsdown 0.07 0.05 0.02

Whilst it has been shown that both approaches yield correlated results in
terms of LSOA vegetation ranking, it should be noted that the two approaches
are measuring different, although similar, quantities and that our street-level
methodology is designed to capture only vegetation visible from the field of view

of a pedestrian. As such, there are a number of outliers in the results presented
in Table 2.

Interestingly, our approach has produced two significant outliers where our
reported percentage vegetation is much greater than the reported percentage
canopy cover in the NRW study. Specifically, two LSOAs, (codes W01001893

and W01001820), belonging to Tongwnlais and Pentyrch wards respectively, have
been over-reported in comparison with the NRW study. This can be explained
by the presence of long stretches of road within the two wards that pass through
high-density road-side woodland. Images obtained along these roads consist of
predominantly more than 99% detected vegetation.

On the other hand, there are some instances where our method under-reports the
amount of LSOA vegetation compared with the NRW study. The under-reporting
in one LSOA (W01001922), belonging to the Cathays ward, can be explained
by the prevalence of terraced housing: at street-level there is little vegetation

26



whereas the area contains numerous trees in back-gardens.

In summary, the mean LSOA percentage vegetation derived from our street-level
methodology has been compared with the LSOA % tree crown cover from the
most recent NRW survey which is a high-quality, thorough inventory of the
study area. We have sought to demonstrate that while the two methods differ
in their approach, they are strongly related. It should be noted that the NRW
study does not represent a ground truth dataset. We use it here specifically to
demonstrate the validity of our method at LSOA level and to highlight the main
characteristic of our approach as a method for sampling vegetation density along
transit corridors from the point of view of a pedestrian.

Evaluation 3: Comparison with street-level

Cardiff tree inventory data from NRW

The final evaluation in this article explores the relationship between predicted
vegetation at street level and canopy cover reported in the Natural Resources
Wales (NRW) study. In the previous section using the NRW data, we compared
Lower layer Super Output Areas (LSOAs) ranked by the predicted vegetation
from both methods. Since our method has been designed to quantify the amount
of vegetation present at much higher resolution than LSOA level, at every 10
metres along a city’s road network, our evaluation can be extended to include a
finer-grained comparison.

The ranked LSOA evaluation used tabular data reported in the NRW study.
As mentioned previously, the data used for the NRW study have been made
publicly available [15] in the form of GeoJSON data, describing the location of
individual trees. Using these data, our objective is to reconstruct a dataset of the
same dimensions as our street-level derived data. Specifically, when expressed in
simplified tabular form, our data contains 110,034 rows of sample points that
represent 10-metre intervals over the entire Cardiff road network:

latitude, longitude, percent_vegetation

Here, the percent_vegetation produced at each sample point is the average of
the percent vegetation detected on the left-hand and right-hand side of the road.

We wish to demonstrate that for each sample point, our “detected vegetation”
coincides with the vegetation present in the NRW data for that specific point.
As such, Using the NRW data, the objective is to construct a new dataset for
comparative purposes:

latitude, longitude, sv_vegetation, nrw_vegetation

Where sv_vegetation equals the percentage vegetation detected by our method
at the (latitude, longitude) sample point, and nrw_vegetation equals the
(estimated) percentage vegetation at the sample point in the NRW data.
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A rigorous approach to forming this dataset would involve a view-shed [38] anal-
ysis in which for every 10-metre point along the road a view-port is constructed
to match the field of view [39] of the associated street-view image. The field of
view would exclude areas behind buildings and other objects that would not be
visible from the street-level view-port. The intersection of visible tree canopy in
the remaining field of view would then be used to derive an percentage visible
vegetation.

Figure 18: Projected buffer zone (red) designed to include road area and building
facades. Intersecting trees (green) are counted as roadside trees

We have not implemented the view-shed approach for this study, but have instead
opted for a simplified method. Firstly, we a construct a fixed width buffer around
the Cardiff road network, which from observation, tends to extend to the roof
tops of buildings along each road. The objective of the buffer is to exclude non
road-side vegetation such as trees in back gardens and private spaces.

As illustrated in Figure 18, the buffer is composed of a sequence of overlapping
fixed radius circles around the 10m sample points along the road. Then, the
percentage canopy present in a particular circular buffer zone is defined as the
ratio of intersecting tree canopy. Repeating this process for each circular buffer
zone, yields the dataset defined above.
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Figure 19: Relationship between street-level vegetation and canopy cover

We expect to demonstrate a relationship between the percentage vegetation
derived from our method and the percentage canopy derived using this approxi-
mate field of view. While there does indeed exist a linear relationship between
the two variables as visible in Figure 19 (R2 = 0.39), there is a high residual
standard error (~0.16). This is due to a flaw in the evaluation method, where a
tree crown inside a circular sampling buffer will yield the same intersecting area
regardless of its position within the buffer. The buffer zones used here could
be described as panoramic, whereas the vegetation captured by our model is
constrained by the left and right view-port at each sample point.
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Summary

In this article, we have considered three different approaches to demonstrate
the effectiveness of our approach at identifying street-level vegetation. In the
first evaluation, we described, in detail, three different classification techniques
of increasing complexity along with comparative performance metrics. The
first evaluation was designed to demonstrate the performance of the approach
specifically in terms of its ability to identify vegetation in arbitrary images, in a
non-geospatial context.

In the second evaluation, we have shown that our approach yields similar results
as an existing study when used to rank Lower layer Super Output Areas (LSOAs)
by vegetation. Besides demonstrating the validity of our prototype from a
geospatial perspective, more generically, the result demonstrates a relationship
between the observed density of trees at street-level and overall “greenness” of
an area.

We had hoped to demonstrate a higher resolution relationship between the
Natural Resources Wales (NRW) study and our own method by attempting
to reconstruct a vegetation index by estimating visible tree density at specific
points from the NRW data. Whilst we found a relationship, we note that the
third evaluation methodology is flawed and would require a detailed view-shed
analysis to produce more meaningful results.

Our initial attempts at the problem were based on the assumption that the
presence of green in a street-level scene would be a crude, although approximate
indication of vegetation. A green pixel thresholding method based on the L*a*b*
colour space was then developed as to provide a baseline or minimal viable
prototype.

Whilst this technique can work well in controlled environments such as in the
plant-phenotyping domain, the reliability of the thresholding technique breaks
down in complex urban scenes. We attempted to refine the threshold model by
parameter optimisation and later by introducing a non-linear threshold method
based on a binary threshold mask derived from a random forest model.

Despite extracting the maximum possible performance from our thresholding
method by means of hyperparameter optimisation, our best model came nowhere
close to the performance of the (pre-trained) PSPNet model. We reported the
results of our early model and initial attempts to improve it as to illustrate the
progression of this project.

Although not covered here, a significant component of this work focused data
engineering, in which we developed an end-to-end distributed image processing
pipeline, API and geospatial backend. During that phase we were faced with a
number of technical challenges relating to the scalability of the approach (we
would require 80 million images to sample the entire UK road network) and as
such, the intention of the L*a*b*-based threshold method served its purpose
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well as a minimum viable product. Details of our image processing pipeline and
associated code have been published on our Github page [42].

Future work

The performance of the PSPNet in terms of its ability to identify vegetation is
somewhat remarkable given the fact that the model used here had previously
been trained on a completely different dataset. Furthermore, we only consider
the use of the model as a binary vegetation classifier: the pre-trained model can
segment a scene into a number of classes.

The pre-trained model used in this evaluation represents a high-quality bench-
mark for future work to improve on. Given the already high level of vegetation
segmentation accuracy achieved by the model, we hope to focus later iterations
of the work on tree species identification.

One of the most exciting outcomes of this project has been the creation of a
high-resolution dataset describing the observable vegetation density at 10-metre
intervals across an entire city. Given the availability and quality of the Natural
Resources Wales (NRW) study, we have used the city of Cardiff for comparative
purposes. Our generated (Cardiff) dataset includes approximately 220,000
sample points. In addition, since the start of the project we have also sampled
Manchester (approximately 330,000 points), Newport and Walsall. Furthermore,
we have partially sampled another 108 cities and having deployed our prototype
image processing pipeline, our dataset is improving on a daily basis.

In addition to an urban-vegetation dataset, we have used the additional classes
predicted by the PSPNet model to build up a database of non-vegetation related
classes for each 10-metre point in a city. For example, we are now able to
describe, in detail, the visual components of a city in high resolution, including
the percentage observed building density, number of cars, bicycles, people,
signage, street furniture and various other objects used to describe an urban
scene. This is a highly interesting geospatial dataset from which we aim to
produce a textual representation of towns and cities. We plan to extend this
approach to form a topological description of a city, combining the quantitative
information (for example, percentage vegetation) detected at specific locations
with abstract descriptions derived from image captioning techniques.

Beyond the production of this dataset, our work is intended to be of use in the
urban-analytics domain. The NRW report used for comparative purposes in this
article, describes a relationship between urban green-space and levels of depriva-
tion including health, income and presence of crime. There are numerous studies
linking green space to various social, environmental and economic indicators.
Exploring the relationship between green-space (and other features), from the

point of view of a pedestrian and other factors such as indicators of well-being
offer an exciting direction for future research.
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