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Executive summary 
The maritime freight industry is of critical importance to the economic output of the UK, with almost half a billion 
tonnes of freight being handled by UK ports in 2016. The Freight Transportation Association estimate that delays on 
both side of the Channel cost the UK logistics industry £750,000 a day1. As the demands upon shipping freight are 
likely to increase in the future, a more in-depth understanding of the UK maritime shipping industry becomes 
increasingly more important. 
 
This report outlines the work undertaken by the Data Science Campus to explore the operation, use and relationships 
between ports in the UK at a macro level and the behaviour and operational characteristics of ships at a micro level, 
specifically: 

• national and international relationships 

• traffic at ports and related factors 

• inbound delays 

• capacity utilisation 
 
 Two sources of data are utilised: 

• Automatic Identification System (AIS). AIS data records the position, speed, heading, bearing and rate of turn for 
each ship, at frequent time intervals throughout its voyage 

• Consolidated European Reporting System (CERS). CERS data is collected at a higher level and records details such 
as destination port and expected time of arrival for the voyage of each ship 

 
A means of storing, decoding and processing AIS data is proposed. A means by which AIS and CERS data can be merged 
is presented, allowing a more comprehensive analysis to be undertaken when compared with exploring each dataset 
in isolation. Exploratory analysis of both datasets uncovers several insights for ships using the largest UK ports and 
Felixstowe in particular.  These insights include: 

• port traffic and utilisation 

• shipping movements  

• port network analysis 

• movement of hazardous materials 

• delays at port 
 
A novel unsupervised machine learning approach using K-means clustering is applied to AIS data aggregated over a 
time-based window. This is used to classify the behaviour of a ship into one of six unique groups at every point 
throughout its voyage. These classifications give a more meaningful and interpretable representation of ship 
behaviour and intention over time when compared with raw positional AIS data.  
 
This classification along with a series of additional non-AIS related features are used to explore the feasibility of using 
supervised machine learning techniques to predict the likelihood that a ship will be delayed arriving at port. Random 
Forests, AdaBoost, Gradient Boosting and XGBoost algorithms are applied to shipping data taken from in and around 
the port of Felixstowe. Results are promising with the XGBoost algorithm being able to correctly identify a ship delay 
in nearly 70% of test cases.  
 
These initial results suggest that additional focus should be placed on further development of both the classification 
and delays models. A means by which these predictions can be used to explore, simulate and optimise the operational 
efficiency ports throughout the UK is also discussed. The report concludes by discussing how the tools and technique 
used in the project may be applied to a broader set of applications lying outside of the maritime field. 

                                                           
1 https://fta.co.uk/press-releases/20150724-port-delays-cost-freight-industry-750000-a-day-says-fta  

https://fta.co.uk/press-releases/20150724-port-delays-cost-freight-industry-750000-a-day-says-fta
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1. Introduction 
The maritime freight industry is of critical importance to the economic output of the UK. In 2016, 484 million tonnes 
of freight were handled by UK ports with 303 million tonnes being imported and 181 tonnes exported (UK Port Freight 
Statistics 2016, Department for Transport). Of the 120 commercial ports in the UK, 51 are classified as being “major”, 
handling over one million tonnes annually and almost 98% of the total imported and exported freight. The European 
Union receives 66% of all UK outbound traffic with 16% being transported to the Asian continent, of which China 
accounted for 6%. Liquid bulk such as Liquified Natural Gas (LNG), crude oil and other oil-based products constituted 
40% of all handled freight with dry bulk such as coal, ores and agricultural products making up another 20%. In 2016, 
10.2 million TEUs2 of container-based traffic passed through UK major ports. 
 
It is therefore unsurprising that in recent years the amount of work that has focused on this area has increased 
dramatically. This report adds to this knowledge base by detailing the work undertaken by the Data Science Campus 
(Campus) at the Office for National Statistics (ONS). The DSC explored the operation, utilisation and relationships 
between ports in the UK at a macro level and the behaviour and operational characteristics of ships at a micro level, 
specifically:  
 

• national and international relationships 

• traffic at ports and related factors 

• inbound delays 

• capacity utilisation 
 
This was done by understanding and analysing major UK port operation and utilisation using available ship geolocated 
big data and port itinerary reports provided by the Maritime and Coastguard Agency (MCA). This report begins by 
reviewing the latest research in the application of AIS data within these research areas. Section three explores the 
data sources used through the project, specifically CERS and AIS. Data issues encountered during the project are 
discussed and addressed with high-level actionable insights being drawn from both data sources. The report 
continues in section four by proposing an unsupervised learning approach to classify the behaviour of a ship into one 
of six segments, allowing the user to explore the behaviour of a ship at a more meaningful and insightful level. Section 
five presents a supervised machine learning technique that predicts the likelihood that a ship will be delayed arriving 
at its destination, these predictions can be used to predict port loading at a point in time and can support subsequent 
operational port planning. Model performance is explored, the most significant model features identified and their 
effect upon the likelihood of delays outlined. Weaknesses within the model are then discussed and areas of 
development are suggested. The report concludes by discussing potential areas of future work and exploring areas 
outside of the maritime industry where the work and findings discussed in this report may be applied.  

                                                           
2 The twenty-foot equivalent unit (TEU) is a unit of cargo capacity used to describe the capacity of container ships. It is based on 
the volume of a standard sized individual 20-foot-long container that can be easily transferred between different modes of 
transportation, such as ships, trains and trucks. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/646188/port-freight-statistics-2016-revised.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/646188/port-freight-statistics-2016-revised.pdf
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2. Background research  
This work is primarily using the AIS and CERS datasets provided by the Maritime and Coastguard Agency (MCA) for 
this study. The latest version of the CERS reporting system and dataset are used to fulfil MCA’s reporting obligations 
under European legislation but, however this rich source of data has not been widely used to support additional 
research. Previously, AIS has been primarily used as an automatic tracking system, widely adopted to identify and 
locate vessels by electronically exchanging data with other nearby ships. In recent years, with the increase in the 
affordability of on-board data acquisition, storage and processing infrastructure and the development of modern 
distributed systems, AIS data has been used as a valid source of important information about vessel movement 
around the world. As Cabrera and others (2015) describes, AIS has often been used in the industry for numerous 
different types of applications like real-time statistics on ship traffic and congestion, operational management at 
ports, sustainable solutions on goods transport, route optimisation and many more. More specifically, there is a lot 
of work around the use of statistical methodologies on large numbers of trip trajectories to obtain motion patterns 
and route definitions around the globe. Real-time and historical AIS data can be used to forecast trajectories based 
on historical routes and allow for anomaly detection, collision prediction and route planning. 
 
Anomaly detection 
Real-time anomaly detection can identify potential security and navigation hazards and therefore is a useful feature 
not only for an on-board intelligent navigation system like AIS but also for the port authorities. It is based on creating 
motion patterns from historical data and using them to identify cases that deviate significantly. The normal ship 
motion is usually predictable as it follows a pattern, but the irregular movement characteristics of a ship are less 
predictable and a bigger challenge to identify. These vessels increase the risk of accidents or collisions in busy areas 
like ports and traffic lanes.  
 
The anomalies in ship behaviour can be grouped in three main categories: position, speed and time. Different 
algorithms can detect different types of anomalies and Tu and others (2016) categorises the anomaly detection 
algorithms in two categories based on the learning characteristics of the models: geographical model-based and 
parametrical model-based methods. Geographical model-based methods are area specific models that are trained on 
local traffic data and are superimposed on a geographical map of the locale to detect anomalies. The following are 
examples of geographical model-based methods: 

• Normalcy box described by Rhodes and others (2005) 

• fuzzy ARTMAP described by Bomberger and others (2006) 

• Holst model explained by Holst and Ekman (2003) and Laxhammar (2008) 

• potential field method mentioned in Osekowska and others (2013)  
 

Parametrical model-based methods are based on the development of parametric models of normalcy that are 
independent of training region maps. Some examples are: 

• Trajectory Cluster Modelling (TCM) applied by Kraiman and others (2002) 

• Gaussian Processes (GP) explained by Rasmussen (2006) 

• Bayesian Networks (BN) used by Johansson and Falkman (2007) 

• Support Vector Machines (SVM) applied in Handayani and others (2013) 
 

Route estimation 
Route estimation involves the development of models that can capture the motion characteristics of a moving vessel 
and accurately estimate the position and path of the vessel from that model. This information can be then used as an 
indicator of possible delays in the ship’s arrival times or predictor variable in prediction models to forecast actual 
arrival delays. In general, the methods used to define the trajectory of a ship can be categorised in three main classes: 
physical model-based methods, learning model-based methods and hybrid model-based methods. In the physical 
model-based methods the motion characteristics of the vessels are calculated by using physical laws and 
mathematical equations that represent all possible factors that can influence the movement of the vessel. The 
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curvilinear model described by Best and Norton (1997) is a common general motion model that covers linear, circular 
and parabolic motion. The ship model proposed by Pershitz (1973) and Li and Jilkov (2003) is a dynamic model that 
considers the physical characteristics of the vessel and can describe and predict its motion.  
 
In the learning based-model methods, the ship’s motion is modelled by a learning model that is trained using historical 
data, in this case AIS historical location points and movement characteristics. The ship’s manoeuvring system is being 
treated as an entire system and the model is being trained to mimic the system’s function using the historical data. 
Neural networks presented in Haykin (2004), can fit complex functions and perform regression, making them the 
most common such models. They have been studied extensively throughout the years, they offer a stable and good 
performance, but their training process can take significant periods of time. Gaussian processes, as mentioned before 
for anomaly detection, are also very powerful on predicting the trajectory of a vessel. Extended Kalman filtering, as 
described by Hamilton (1994) and Grewal (2011), is a recursive estimator that consists of the prediction and update 
phases. Finally, Minor Principal Component Analysis has proven to be an accurate route estimation algorithm, as 
described by Bartelmaos and others (2005) and Peng and Yi (2006). It is a similar method to the Principal Component 
Analysis (PCA), simple to implement but might have limited ability to model nonlinear behaviour.  
 
The hybrid model-based methods for estimating the trajectory of a vessel are combinations of physical and learning 
model-based methods to achieve better performance. An example of this is the combination of a curvilinear model 
to describe the common ship movement patterns and used as the motion model in the extended Kalman filtering, as 
described in Tu and others (2016). Another example is the combination of two different learning algorithms to achieve 
even more accurate estimation of the route, one to learn the characteristics of the ship’s movement and the other 
to optimise the overall model performance. Such examples can include the combination of least square support 
vector machine (LS-SVM) and particle swarm optimisation (PSO) described by Zhou and Shi (2010), the combination 
of Kalman filtering and neural networks described by Guo and others (2009) and Stateczny and others (2011) and the 
combination of neural networks and genetic optimisation described by Khan and others 2005. 
 
Path planning 
In cases where high risk of collision is detected or alternative routes need to be found by the ship navigators, AIS can 
be used to provide the necessary information. Path planning is the process of finding a new safer route with the 
minimum cost with respect to time, distance, changes to the route and delays. In the past experienced navigators did 
this, but nowadays intelligent path-planning algorithms can take into consideration many factors and provide optimal 
alternative routes, as described by Cummings and others (2010). There are several path planning methods in the 
literature, like the shortest graph path method, evolutionary algorithm method and evolutionary set method, as 
described by Hornauer and others (2015), Lazarowska (2014) and Szlapczynska (2013). 
 
The work around vessel behavioural segmentation presented later in this report is directly related to anomaly 
detection and route estimation, and might prove useful in enhancing the performance of some of the techniques 
described in this section. By detecting unexpected changepoints in the ship’s behaviour segmentation, one can 
identify anomalies in the position, speed or time characteristics of the ship’s voyage and feed these to the anomaly 
detection algorithms. Also, by analysing the historical behavioural segmentations of a specific ship or ships that travel 
through popular shipping lanes, new features can be engineered and used to estimate the future path of a ship. 
Finally, the study around delays prediction based on the motion behaviour of the vessels and other external 
parameters like weather can be linked to path planning and provide a more accurate target field for the planning 
algorithms. By accurately defining arrival delays and managing to detect them in a timely manner and quantify them, 
more efficient route planning might be achieved and delays avoided.  



 
 

7 
 

3. Data exploration 
The data used in this project was provided by the Maritime and Coastguard Agency (MCA) who authorised access to 
the CERS platform and provided an extract of AIS data covering UK waters for land-based AIS transmitters. These data 
sources are discussed in the following subsections. 

3.1. Consolidated European Reporting System (CERS) 
The Consolidated European Reporting System (CERS) was originally created in 2006 to ensure the UK met its reporting 
obligations under European legislation. It is used by masters, shipping agents and port authorities to provide 
mandatory reportable information when a vessel arrives at a port in the UK. It captures ship arrival and departure 
notifications, dangerous or polluting goods notifications and notifications of port waste and bulk carrier 
infringements, for all the ports within UK waters. The information stored within CERS is forwarded onto SafeSeaNet 
(SSN), the central European data collection system in accordance with the EU Vessel Traffic Monitoring and 
Information System Directive (2002/59/EC) 
 
A CERS report must be made at least 24 hours in advance of arrival or departure by the following: 

• all ships of 300 gross tonnage and above 

• all recreational craft of 45 metres length and over 

• all ships regardless of size, when carrying dangerous or polluting goods, either departing from or bound to a UK 
port 

 
The CERS system is not a dataset, but rather a tool that can be used to create records of voyages using a Windows-
based user interface. Once complete and verified, records are passed in XML format to SSN. The MCA has more 
information relating to the CERS system. 
 
The user interface consists of the following three sections. 

• Port level information (one row per port), fields include: 
o port identifier and name 
o port address 
o port authority 
o port size 
o number of voyages 

 

• Vessel level information (one row per ship), fields include:  
o Maritime Mobile Service Identity (MMSI), the unique ship identifier 
o name 
o callsign 
o gross tonnage 
o certification details 

 

• Voyage level information (one row per ship, per voyage), fields include: 
o Maritime Mobile Service Identity (MMSI), the unique ship identifier 
o current, previous  and next port of call 
o actual, estimated time of arrival and departure at current port 
o inbound and outbound hazardous material flags 

 
All historical records can be downloaded for offline processing. Additional information including detailed waste and 
hazmat manifests was extracted (with permission) by creating an automated process to directly retrieve data from 
the relevant dialog screens within CERS. 

https://www.gov.uk/government/publications/the-cers-workbook
https://www.gov.uk/government/publications/the-cers-workbook
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3.2. CERS exploratory analysis 
An extract of CERS data covering the 2017 calendar year was taken. This contained information relating to 120,000 
voyages into and out of 172 UK ports. A high-level analysis of this data gives several headline insights relating to the 
operation, utilisation and relationships between ports in the UK at a macro level. 
 

 
Figure 1: Average number of visits (call to port) per day 

Orkney Islands (530), Gills Bay (209.4) and Penzance (207) omitted for clarity 
 
Port loading  
Port loading can be explored by plotting the average number of visits per day (Figure 1) and the average vessel size 
per visit (Figure 2). Here it can be seen that there are a handful of ports that receive very large volumes of visits per 
day. The Orkney and Gills Bay ports are major links in the oil and gas network and are also linked by frequently running 
ferries. The large number of daily visits to both Portsmouth and Southampton ports reflect their status amongst the 
largest passenger ports in the UK; this is further reflected in the relatively low average vessel size per visit. Surprisingly 
Felixstowe, the largest freight container port in the UK, has a comparatively low number of daily visits. 
 
Turning to the average vessel size per visit (Figure 2). The first fours ports (Shetland, Hound Point, Tetney and Orkney) 
are all ports that predominantly serve the gas and petrochemical industries and are therefore most likely to be visited 
by the very large super tankers. Of the non-petrol chemical related ports, Felixstowe receives the largest ships by 
gross tonnage. 
  

 
Figure 2: Average vessel size per visit (tonnes) 
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Focusing on Felixstowe3, arrivals of ships into port broken down by month, day and time of the day are shown (Figure 
3 to Figure 5). The figures are expressed as indices relative to the expected average for that time window. For instance, 
a daily value of 1.2 indicates arrivals that are 20% higher than the expected daily average. The indices for monthly 
arrivals are very small and caution must be exercised; however, they suggest there may be a small seasonal trend 
with fewer than expected ships docking at Felixstowe over the winter months (September to February) and larger 
volumes over the summer months (May to August). Turning to the daily breakdown, arrivals into port are lower over 
the weekend and higher during the working week. One exception to this is Monday where arrivals are almost 20% 
lower than the expected daily average. A stronger message can be seen when arrivals are broken down by time of 
the day; here Felixstowe has at least 20% fewer than average arrivals between early morning and lunchtime hours 
(0400 to 1300), with the quietest period generally being between 0800-0900 where arrivals are over 40% less than 
expected. Afternoons and evenings (1300-2200) are generally much busier with arrivals being up to 30% more than 
average. 

  
Figure 3: Monthly arrivals at Felixstowe 

Figures are expressed as an index relative to the 
monthly average 

Figure 4: Daily arrivals at Felixstowe 
Figures are expressed as an index relative to 

the daily average 
 

 
Figure 5: Arrivals at Felixstowe throughout the day 

Figures are expressed as an index relative to the average for that time window 

                                                           
3 The charts may be recreated for any port within CERS, however this section focuses on the port of Felixstowe reflecting its status 
as the predominant container port in the UK 
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Shipping movements and port links 
The relationship between shipping movements for the ports of Belfast, Felixstowe and Milford Haven are shown below 
(Figure 6 to  
 
Figure 8). These show common port links for outbound journeys (as a percentage of total voyages). All three ports serve 
very different geographic regions. The ships leaving the port of Belfast predominantly sail to destinations within UK 
waters, with 60% of ships sailing to the ports of Loch Ryan, Birkenhead and Heysham. Ships leaving the port of Felixstowe 
generally travel to ports within the continental mainland with nearly 70% terminating at the ports of Rotterdam, 
Antwerp, Hamburg, Bremerhaven and Amsterdam. Milford Haven almost exclusively serves international destinations, 
with 88% of ships sailing to unspecified international ports, New York and Ras Laffan in Qatar.  
 

 
 
 
 
 
 

Loch Ryan 35% 
Birkenhead 15% 
Heysham 10% 

Unknow Int. 6% 
Greenock 2% 

 
 
 
 
 

Figure 6: Port of Belfast. National port links 
(percentages give proportion of voyages from Belfast terminating at each port) 

 
 

 
 
 
 
 

Rotterdam 51% 
Antwerp 10% 
Hamburg 8% 

Bremerhaven 5% 
Amsterdam 4% 

 
 
 
 
 
 

Figure 7: Port of Felixstowe. Mainland continental port links 
(percentages give proportion of voyages from Felixstowe terminating at each port) 
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Figure 8: Port of Milford Haven. International port links 
 (percentages give proportion of voyages from Milford Haven terminating at each port) 

 
Further insight relating to the operational links between ports may be explored by applying network analysis. 
 
 
Network analysis 
Applying network analysis to the outbound and inbound voyages at ports allows for visualisation of the most 
important routes for Great Britain. Figure 9 shows the voyages from Great Britain to countries within 3,500km, 
highlighting the Netherlands, Belgium and Germany as the most important neighbours. Figure 10 shows the voyages 
to Great Britain from countries within 3,500km, also highlighting the Netherlands, Belgium and Germany as the most 
important neighbours plus Spain. For all inbound and outbound voyages, 37% are between ports within Great Britain, 
with 19% between Great Britain and the Netherlands, 8% between Belgium and Great Britain and 7% between 
Germany and Great Britain. 
 

                                                           
4 Unknown Int. is a catch all destination classification that relates to all unknown or unspecified international ports 
 

Unknown Int4. 86% 
Rotterdam 4% 
New York 1% 
Ras Laffan 1% 
Moerdijk 1% 
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Figure 9: Voyages from Great Britain to countries within 3,500km 

 

 
Figure 10: Voyages to Great Britain from countries within 3,500km 

 

More than 1,000 voyages from Great Britain 

More than 500 voyages from Great Britain 

More than 10 voyages from Great Britain 

More than 1,000 voyages to Great Britain 

More than 500 voyages to Great Britain 

More than 10 voyages to Great Britain 
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Focusing on Felixstowe emphasises the importance of Felixstowe as a port to Great Britain, with Felixstowe’s most 
important neighbours aligning with those for Great Britain. Of all Felixstowe voyages, 25% are between Felixstowe 
and the Netherlands, 17% between Germany and Felixstowe and 10% between Belgium and Felixstowe. 
 

 
Figure 11: Voyages from countries within 3,500km in and out of Felixstowe 

 
 

Hazardous materials 
The movement of hazardous materials (hazmat) within UK ports is of particular interest. There are two fields within 
the CERS database that specify whether a ship enters and leaves a port carrying hazardous materials. These data were 
used to identify ports where a large proportion of ships either load or unload all or some of their hazmat cargo. In 
most cases, there are no significant differences between the proportions of ships entering and leaving a port carrying 
hazmat. However, in a few cases a difference is noted. Figure 12 shows that in Belfast 28% of ships enter port carrying 
hazmat and 48% leave carrying it, for Holyhead these figures are 25% and 80% respectively, which suggests that both 
ports send hazmat to other ports. Conversely, 37% of ships entering the port of Hull carry hazmat whilst only 31% 
leave Hull carrying it, suggesting that Hull accepts hazmat from other ports. 
 
 

More than 300 voyages in and out of Felixstowe 

More than 100 voyages in and out of Felixstowe 

More than 10 voyages in and out of Felixstowe 
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Figure 12: Moment of hazardous material in and out of port 

 
Exploring these differences further, CERS data can be used to understand where the hazmat leaving Belfast and 
Holyhead goes to and where the hazmat unloaded at Hull comes from. In the case of Belfast (see Figure 13) the 
majority travels to Birkenhead, Heysham and Loch Ryan ports. In the case of Holyhead, almost all travels to the ports 
of Dublin (see Figure 14). Turning to imported hazardous material and the port of Hull: large proportions are imported 
from ports outside the UK, specifically Rotterdam, Antwerp, Oxelösund in Sweden and Luanda in Angola (see Figure 
15). 
 

  

Figure 13: Destination of hazardous material loaded at 
Belfast as a percentage of all voyages 

Figure 14: Destination of hazardous material loaded at 
Holyhead as a percentage of all voyages 
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Figure 15: Source of hazardous material unloaded at Hull as a percentage of all voyages 

 
 
Delays 
Delays resulting from the late arrival of ships at port can have a significant operational and economic impact. Figure 
16 gives the distribution of all arrival delays5 within UK ports. As expected, delays are broadly normally distributed 
with the median value being located around zero. Just over 43% of ships are subjected to a delay, with 24% of all 
ships being delayed by an hour or more. This proportion drops to 17%, 12%, 8% and 6% for delays of two, three, four 
and five hours respectively.  

 
Figure 16: Distribution of arrival delay (measured in hours) for all ports 

A positive value indicates a delay, whilst a negative value indicates early arrival  
 
 

                                                           
5 For a full definition of delays see the ‘Predicting delays’ section of this report. 
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When the distribution of arrival delays is plotted for each day (Figure 17) the distribution changes little, suggesting 
that arrival delay is independent of the day of arrival. However, the charts suggest that an effect is evident when 
broken down by time of the day (Figure 18) and more notably seasonality (Figure 19). In the former example fewer 
ships are delayed at night time and in the early hours of the day whilst more ships are delayed during the start of the 
working day. In the latter case, fewer ships are delayed in the spring and summer seasons. 
 

 
 

Figure 17: Distribution of arrival delay (measured in hours) for all ports, broken down by day of arrival 
A positive value indicates a delay, whilst a negative value indicates early arrival 

 

  
 

Figure 18: Distribution of arrival delay (measured in hours) for all ports, broken down by time of arrival 
A positive value indicates a delay, whilst a negative value indicates early arrival  
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Figure 19: Distribution of arrival delay (measured in hours) for all ports, broken down by season of arrival 
A positive value indicates a delay, whilst a negative value indicates early arrival  

 

3.3. Automatic Identification System (AIS) 
AIS was first developed in the 1990s for use as a short-range identification and tracking system used on ships and 
other marine traffic. On board AIS equipment (see Figure 20) allows ships to view traffic in their local area (10 to 20 
nautical miles) and to simultaneously be seen by that traffic.  
 

 
 

 
Figure 20: On-board AIS equipment and typical graphical display  

 
More recently the AIS system has been used to support: 

• collision avoidance, notably amongst vessels outside the range of shore-based systems 

• fishing fleet monitoring and control  

• vessel traffic services, used to augment existing systems such as local vessel traffic service (VTS) 



 
 

18 
 

• maritime security, to identify and monitor suspicious activity patterns 

• aids to navigation, which may support or replace information generated by radar beacons currently used for 
electronic navigation aids  

• search and rescue., coordinating on-scene resources of a marine search and rescue (SAR) operation 

• accident investigation, AIS information is more accurate and comprehensive than transitional systems such as 
radar 

• ocean current estimates 

• fleet and cargo tracking 
 
There are 27 types of AIS message. Of these, two are relevant to this report as they relate to ship position and 
dynamics. Class A messages are sent by large ships typically over 300 tonnes and those carrying passengers. Class B 
messages are used by lighter commercial and leisure craft. In both cases, an AIS transmitter will send the following 
information every 2 to 10 seconds when underway and every three minutes when stationary or at anchor: 

• Maritime Mobile Service Identity (MMSI) the unique ship identifier 

• navigation status, at anchor, under way using engine(s), not under command an so on 

• rate of turn, right or left, from 0 to 720 degrees per minute 

• speed over ground, 0.1 knot resolution from 0 to 102 knots  

• longitude, accurate to 0.0001 minutes 

• latitude, accurate to 0.0001 minutes 

• course over ground, relative to true north to 0.1 degrees 

• true heading, 0 to 359 degrees  

• true bearing at own position, 0 to 359 degrees 

• UTC seconds, the seconds field of the UTC time when the data were generated 
 
Higher-level information is transmitted less frequently (every six minutes): 

• Maritime Mobile Service Identity (MMSI), the unique ship identifier 

• radio call sign, up to seven characters 

• name of vessel  

• type of ship and cargo 

• ship dimension 

• location of positioning system (such as GPS) antenna on board the vessel 

• type of positioning system – such as GPS, DGPS or LORAN-C 

• draught of ship – 0.1 to 25.5 metres 

• intended destination 

• ETA, estimated time of arrival at destination 
 
A recent development of the AIS system is the ability to make it viewable on the internet without the need for a 
dedicated receiver. This removes the range limitation of the marine-based receivers and allows AIS data to be 
visualised over a wider area (see Figure 21). With permission, data may also be downloaded to be used for additional 
offline processing. 
 
  

https://www.navcen.uscg.gov/?pageName=AISMessages
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Figure 21: Online AIS data showing the position of ships around the UK at noon on the 25 April 2018 

 

3.4. Processing AIS data 
The AIS data used for this study spans for a period of 12 months, between 1 August 2016 and 31 July 2017. The raw 
data encoded using the National Marine Electronics Association (NMEA) format, was approximately one terabyte in 
size and consisted of almost three billion rows. A Hadoop Distributed File System (HDFS) environment was used to 
decode the encoded messages, process the new data, filter out the required types of messages and extract smaller 
slices of data based on certain criteria, as described in the next subsections.  
 
Once the data was saved in the HDFS environment, it was accessed using Pig, Hive and Spark as part of the Hadoop 
stack. Decoders for individual types of message were written in Scala (see next section), the raw data was decoded 
in a table format and saved as Parquet files. Scala functions were also developed to filter out the data based on the 
type of message, unique ID of ship, timestamp, geographic location and other criteria. After filtering, the data was 
extracted from the Hadoop environment, stored in local machines and further processed using Python and R (see 
Figure 22).  
 

 

https://www.marinetraffic.com/
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Figure 22: Cloudera distributed system environment 

 

3.5. Decoding AIS data  
AIS data was extracted in standard National Marine Electronics Association AIS message format; this is a text encoded 
binary format that was decoded before being split into a series of files based upon the AIS message type. As some 
messages are split over multiple lines (see Figure 23), they were concatenated before being decoded into real data 
that can be directly interpreted and processed. 
 

 
 

Figure 23: One-line and two-line examples of raw AIS messages 
 
The component of the positioning Type 1 AIS message that was of specific interest is: 
 

\!BSVDM,1,1,,A,E>jHCFbW7a:4@1Pa9@1:WdP0000Or:e=@6q@@10888uf:0,0*27 
 

http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.catb.org/gpsd/AIVDM.html


 
 

21 
 

The message is comma-separated with each element of the message decoding to a unique piece of information (Table 
1). 
 

Component Description 
\!BSVDM The NMEA message type 

1 Number of message lines  
1 Sentence number (1 unless it´s a multi-sentence message) 
 Sequential message ID (for multi-sentence messages) 

A AIS Channel (A or B) 
E>jHCF... Encoded AIS data 

0* End of data terminator 
27 NMEA checksum 

 
Table 1: AIS decoded message components 

(NMEA provide a full review) 
 
Message integrity was checked using the NMEA checksum and corrupted messages discarded. The multi-sentence 
messages were then assembled together into single messages, through concatenation of the encoded AIS data parts. 
In NMEA AIS encoding, each ASCII character corresponds to six binary bits (unlike normal ASCII which uses eight). To 
account for this, the decoding algorithm steps through each character of the encoded AIS data and subtracts 48 from 
the decoded value. If the resulting number is a decimal number with a value greater than 40, the algorithm again 
subtracts eight. The resulting number is then converted to a binary string that is split into substrings using the message 
element positioning given in the NMEA encoding specification. Table 2 provides samples of the relevant splitting 
positions for an AIS message. 
 

Element  Position  

MMSI Number from bit 8 for 30 bits  
Longitude from bit 61 for 28 bits 
Latitude from bit 89 for 27 bits 
Course from bit 116 for 12 bits 
Heading from bit 128 for 9 bits  

 
Table 2: AIS message splitting positions 

 
The data was finally split according to the message type and saved in intermediate storage. During saving, the data 
was partitioned according to the time stamp of the AIS message. The parquet storage format was used as it offered 
good compression, incremental addition of new data, most importantly, the ability to read only specified segments 
instead of the full dataset. 
 
One important feature that was considered when processing the AIS data was the ability to extract the messages 
within a specified time window and for a specific area of interest. The area of interest was defined as a rectangular 
geometric shape specified by the latitudinal and longitudinal coordinates of the top-left and bottom-right corners. 
The data was read from the compressed parquet storage format using predicate pushdown based on the requested 
time window and filtered in a distributed manner based on the coordinates for each message. Then the data was 
collected into the driver node and exported in comma-separated values (csv) format. 
 
All the above procedures were developed within the Apache Spark distributed computing engine and the data was 
stored in Apache Hadoop. For this project, only data from the waters around the UK was used, however the linear 
scalability of the distributed computation and storage allows the algorithm to be easily applied to data at a global 
scale.  

http://www.bosunsmate.org/ais/#bitvector
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
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3.6. Visualising AIS data 
Once the AIS data has been decoded into a series of latitude and longitudinal pairs it can be plotted and superimposed 
onto a map or nautical chart. These plots can be used to gain an understanding of ship positions at a given point in 
time and ship movements across any given time window.  
 

 
 

Figure 24: AIS base-station data for a single ship  
 
Figure 24 gives the AIS track for a single Liquefied Natural Gas (LNG) tanker6. The diagram shows that ship travels 
through the Azores (bottom left of the chart) into the English Channel and docks in London Medway port. The ship 
then leaves port and once again passes through the English Channel, before heading south past the north-western 
tip of Spain. The ship turns east and then continues its journey through the Strait of Gibraltar on through the 
Mediterranean, finally docking in Cyprus. 
 
It should be noted that the gaps in the base-station data relate to missing AIS coverage caused by the ship being 
outside the range of ground stations. In such cases, AIS coverage is maintained by using satellite tracking. As all UK 
ports and their surrounding waters are within range of at least one base station, AIS coverage is complete in the data 
used for this project.  
 
One particular area of interest in the voyage of this tanker can be seen due east of London Medway port (Figure 25). 

                                                           
6 The data for this was provided by Centre for Big Data Statistics at Statistics Netherlands (CBDS) and did not form part of the 
data extract used for the remainder of the project. 
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Figure 25: AIS base-station data for a single ship (enlarged view) 

 
 
One may reasonably expect that the tanker would follow a smooth arching path starting north-east through the 
channel and turning onto a south-westerly bearing into port. However, the ship comes to a stop and remains 
stationary for several hours (circled), before heading away from port on a due north heading before turning through 
180 degrees and travelling south-west into port. Conversation with domain expert have indicated that this behaviour 
is indicative of the ship waiting for cargo price to increase before it enters port and docks. Although the behaviour of 
the above tanker may appear counterintuitive in open sea, it becomes more consistent as it approaches port, as the 
ship enters and leaves in a more uniform manner. However, this consistency is not observed in all ports. 
 
 

 
 

Figure 26: AIS base-station data for a single ship (port of Rotterdam) 
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Figure 26 shows the journey of a light general transporter in and around the port of Rotterdam7. Unlike the LNG 
tanker discussed earlier, the ship in this instance calls at several berths within the port, loading and unloading cargo 
throughout. 
 
A final example is discussed below. The tracks relate to several journeys undertaken by a large 200,000 tonnes, 400m 
by 60m container ship within the port of Felixstowe. The highlighted area illustrates that on at least two occasions 
the tanker heads north before turning sharply through 180 degrees and heading south before docking at a berth it 
had previously travelled past (see Figure 27). On first inspection this behaviour may appear unexpected, however it 
is an accepted practice for a docking ship to manoeuvre against the prevailing inbound current caused by the flooding 
tide to aid the docking process.  
 

 
Figure 27: AIS base-station data for a container ship 

 
To this point, AIS data has been used to explore the voyages of individual ships. However, the daily points taken from 
within an area can be combined to produce a heatmap of ship movements within a port. This can be used to indicate 
shipping lanes, port berths and port loading over time. 
 
 
Figure 28 highlights notable features relating to Felixstowe (the busiest container port in the UK), including: 

• the emergence of “hot” regions indicating unique berths within the northern edge of the port, most notably on 
12 December and 1 January 

• evidence that not all ships that enter Felixstowe go on to dock at the port, some ships turn east and head towards 
the international port of Harwich whilst others head north west onto the river Orwell and onto inland destinations 

• port loading on Christmas day is considerably lower than on other days 
 
 
 
 
 
 
 
 

                                                           
7 The data for this was provided by Centre for Big Data Statistics at Statistics Netherlands (CBDS) and was not part of the data 
extract used for the remainder of the project 
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Monday 12 December 2016 Monday 19 December 2016 

 

 

 

 
Sunday 25 December 2016 Sunday 1 January 2016 

 
Figure 28: Port loading, Felixstowe (from green, through amber to red represents an increasing density of AIS 

points) 
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4. Classifying AIS data 
The previous section presents examples of how the visualisation of AIS tracks within a given port and on the open sea 
can be used to support the high-level understanding of ship and port behaviour on a macro level, for example, 
identifying shipping lanes, holding areas, port berths, port loading and so on. However, this visually driven approach 
is of limited use in quantitatively classifying behaviour on an individual ship-by-ship basis. To address this, various 
machine learning techniques were applied to the AIS data to extract actionable insight. An unsupervised k-means 
classifier8 was used to segment the behaviour of a ship into one of many intuitive states (transitioning through port, 
manoeuvring into dock, docked and so on). These behavioural states transform the AIS data to a more meaningful 
and interpretable representation which can be used to better understand the behaviour of a ship at any point on its 
voyage. 
 
AIS data was extracted from the port of Felixstowe and its surrounding sea spanning a 12-month time window from  
1 August 2016 to 31 July 2017. Several features within the AIS data were investigated as potential inputs to the 
segmentation, these including: 

• Speed over Ground (SOG) (knots) 

• acceleration (derived from SOG) (knots per second) 

• Rate of Turn (ROT) (degrees per second) 

• bearing (degrees) 

• heading (degrees) 
 
It is critical that any classification should be sufficiently robust so that it may be applied to the ships at any port or at 
any geographic area in open sea. Early investigations showed that a segmentation using either bearing or heading as 
features, although powerful from a classification perspective, would fail from the standpoint of robustness. Consider 
a segmentation trained upon the data from ships operating in and around the port of Southampton on the south 
coast of England. It follows that a ship heading into dock would predominantly be heading in a northerly direction. 
During training, the machine learning algorithm would learn that ships heading north would be entering port whilst 
ships heading south would be leaving port. If this pre-trained segmentation was then applied to a port on the north 
coast of Scotland where ships head south to enter port and north to leave port, the segmentation would clearly 
classify incorrectly. The impact of this could be mitigated to a degree by sampling AIS tracks from ports at different 
orientations; however, the problem would not be completely removed since UK ports do not cover every possible 
orientation. 

  
Between -720 and 720 degrees per minute Between -50 and 50 degrees per minute 

Figure 29: Distribution of ROT 
 

                                                           
8 Kmeans clusters aims to find similar groups or segments within the data, with the number of groups represented by the 
parameters k. It works by iteratively assigning each data point to one of k groups based on the features that are provided. Data 
points are clustered based on feature similarity (MacQueen, 1967). 

-720 0 720 -50 0 50
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As speed over ground (SOG) and rate of turn (ROT) do not suffer from these drawbacks they were chosen as more 
suitable inputs to the segmentation. On closer inspection, the distribution of the ROT variable taken directly from the 
AIS sample did not follow the expected normal distribution - a large proportion of records are located at very large 
ROT values (see Figure 29). 
 
A new ROT variable was derived directly from the latitudinal and longitudinal points as shown below. 
  

 
 

Figure 30: Calculating ROT 
 
Figure 30 shows three latitudinal and longitudinal pairs that describe positions on the sea at times t1, t2 and t3. The 

ROT at t2 is given by firstly calculating the angle of turn  at t2 using standard trigonometric techniques. This angle is 
then divided by the time taken to travel between t3 and t2 to give ROT. The two ship tracks on the right-hand side 
illustrate the differences between high and low ROT.  
 
A kmeans clustering algorithm was applied to training data containing SOG and ROT pairs taken in isolation at every 
point along the track of each ship (Figure 31). In this instance, if the voyage of a single ship contains 1,000 AIS points 
all 1,000 points were used for training purposes.  
 
 
To remove noise created by smaller ships such as tugs and ferries, AIS data was extracted for the following ship types:  

• container ship 

• general cargo ship 

• chemical and oil product tankers 

• cargo ship 

• bulk carrier 
 

This reduced the number of available AIS data points from 10.1 to 2.3 million, corresponding to 772 unique ships. 
 
 
 

Low ROT

High ROT

θ

t1

t2

t3

θ

(t3 – t2)
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Slice 1 Slice 3 Slice 2 Full journey 

TP1 

TPn - nth training data point  

TP3 

TP2 

Full journey 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31: Training data for a single ship 
(Simplified for clarify, in reality each ship journey contains many more AIS data points) 

 
The approach identified several unique segments. However, most identified segments were noisy with very few 
containing unique or intuitive behaviours. As this approach treats each AIS data point in isolation, with no 
consideration given to the relationship between points over time, it is overly sensitive to noise within the AIS data, 
caused by atmospheric effects, obsolete equipment or on-board interference. A more robust approach was 
developed that added a time-based aggregated component to the SOG and ROT fields that reduces the sensitivity of 
the segmentation to AIS signal noise. For each journey, a random slice of AIS data was taken during the voyage (see 
Figure 32). Several different time windows we investigated ranging from one to 10 minutes. A two-minute slice was 
found to give the best balance between sensitivity and robustness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32: Three random journey slices taken from the path of a single ship 
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Histograms of the SOG and ROT values were then created and converted into two state vectors, SOG and ROT. 
Essentially, each state vector represents a historical distribution of the individual SOG and ROT values across the 
preceding two minutes. The bin boundaries for the SOG and ROT state vectors were selected to ensure approximately 
equal quantile population density across the entire training dataset. The final boundaries are given in Table 3, 
 
 

Quantile Range 

1 SOG = 0 
2 0 < SOG ≤ 1 
3 1 < SOG ≤ 2 
4 2 < SOG ≤ 3 
5 3 < SOG ≤ 5 
6 5 < SOG ≤ 10 
7 SOG > 10 

 

Quantile Range 

1 ROT ≤ 0.1 
2 0.1 < ROT ≤ 0.6 
3 0.6 < ROT ≤ 2.5 
4 2.5 < ROT ≤ 8 
5 ROT > 8 

 
Table 3: Bin boundaries for SOG and ROT 

 
Figure 33 gives the ROT and SOG state vectors for a given point (TP1) on a hypothetical voyage. In this example the ROT 
distribution assumes an approximate log normal distribution whilst the SOG distribution is exponentially distributed, it 
can therefore be concluded that in the preceding two minutes this ship is generally travelling at lower speeds and with 
limited rate of turn.  
 
One disadvantage of this approach stems from the fact that the data is aggregated over all the AIS points within a two-
minute window. If only one slice is taken from each ship voyage then the resulting training data-set will be significantly 
smaller than that generated in the previous approach. To overcome this, several random slices are taken from each voyage 
to maintain approximately consistent training dataset sizes.  
 
 

 
Figure 33: The SOG and ROT state vectors for a given journey slice 
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As with the previous approach, a k-means unsupervised algorithm was applied to the training data, the number of 
generated segments (k) was set to an arbitrarily large value of eight. Segments that were similar based upon their centroids 
as defined by the ROT and SOG state vectors were merged. This gave a final set of six unique segments. These segments 
were each assigned descriptive name to aid interpretation. Each of the six segments fall into the following three higher-
level behavioural groups: 

• transitional behaviour 

• docking behaviour 

• docked behaviour 
 

The following section discusses each of the six segments in turn. In each case, a table indicates where each segment over 
indexes (green) within the SOG and ROT input state vectors. A heat map then gives all the AIS points that fall into each of 
the segments (each percentage value gives the number of training points that fall into that segment). 
 
 
Transitional segments 
Ships within the two transitional segments (Figure 34) do not dock within the port and are not in the process of docking. 
Instead they use the port to transition into other inland areas. In the case of Felixstowe this is either heading east to the 
port of Harwich or north-west to other inland destinations.  
 
 

 Speed over Ground (SOG) Rate of Turn (ROT) 

 0 0-1 1-2 2-3 3-5 5-10 10+ 0.1 0.1-0.6 0.6-2.5 2.5-8 8+ 

Border phase             

General phase             

 
 

  
 

Border phase 
 (4% of training dataset) 

 
General phase  

(57% of training dataset) 
 

Figure 34: Transitional segments, (from green, through amber to red represents 
an increasing density of AIS points) 
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The border phase segment has the highest speed of all segments, its ROT is typically low indicating that ships in this 
segment are not manoeuvring to any significant degree. The heatmap shows that there is a higher density of points located 
around the southern border of the port. It is suggested that this segment represents ships that are entering port and 
slowing down from their open-water cruising speed to the speed limit within the port. The general phase segment is 
closely related to the border phase segment. Although the ROT distributions are similar, the speed of the ships in this 
segment is significantly lower. This coupled with the heatmap, which shows no noticeable increase in density, suggests 
that these ships have passed the port boundary and are observing the local speed limit whilst they transition through the 
port. 
 
One interesting feature of the border phase plot illustrates the noise that is sometimes present in the AIS data. The circled 
point relates to the AIS reading from a ship that is positioned against the northern harbour wall. However, the SOG reading 
for this point indicates that the ship is travelling at over 10 knots. This is clearly impossible and is likely to be caused by 
noise within the AIS data, however the machine learning approach is robust enough to handle this and other data 
anomalies.  
 
Docking segments 
The docking segments (Figure 35) classify ships that have initiated the process of docking into one of the harbour berths. 
There are three docking segments, each one relates to a unique phase of the docking process. 
 
 

 Speed over Ground (SOG) Rate of Turn (ROT) 

 0 0-1 1-2 2-3 3-5 5-10 10+ 0.1 0.1-0.6 0.6-2.5 2.5-8 8+ 

Initial phase             

Mid phase             

Terminal phase             

 
 

   
 

Initial phase  
(10% of training dataset)  

 
Mid phase 

(5% of training dataset)  

 
Terminal phase  

(13% of training dataset) 
 

Figure 35: Docking segments, (from green, through amber to red represents an increasing density of AIS points) 
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The speed of ships within the initial phase segment has dropped below that of the transitional phase ships. Their AIS points 
on the heat map indicate that they are turning towards the harbour berths. Ships classified within the mid-phase segment 
have decreased their speed further and are also starting to manoeuvre into dock (indicated by increasing ROT values). The 
final docking segment, terminal phase, is characterised by very slow speeds (less that one knot) and high ROT values. Ships 
in this segment are in the final stages of docking and are turning into their intended berth at very slow speeds and higher 
rates of turn. The heatmap for this illustrates the vicinity of the ships to the harbour wall. 
 
Docked segment 
The final segment relates to ships that have reached their destination (Figure 36). Ships within this segment have virtually 
no speed, the high rates of turn relate to the very final stages of the docking process where final adjustments are made to 
the ship position within the port. This heatmap for the segment confirms that the ships are all docked or very close to 
being so. 
 

 Speed over Ground (SOG) Rate of Turn (ROT) 
 0 0-1 1-2 2-3 3-5 5-10 10+ 0.1 0.1-0.6 0.6-2.5 2.5-8 8+ 

Docked             

 

 
Figure 36: Docked segment (12% of training dataset) 

 
In an attempt to further distinguish between ships entering and leaving port and dock, the segmentation was expanded 
to include a deceleration feature. This feature was pre-processed in exactly the same way as the SOG and ROT features. 
It was found that the acceleration feature dominated the segmentation and washed out the contribution of both the ROT 
and SOG features resulting in its removal for subsequent analysis.  
 
Recall that the inputs to the segmentation algorithm are two state vectors consisting of a total of 12 values. The centroid 
of each of the six segments can be defined within 12-dimension space. An informative exercise is to visualise the six 
segment centroids in two-dimensional space so that the spatial separation of each segment may be explored. This is 
achieved by applying t-distributed Stochastic Neighbour Embedding (t-SNE)9. Figure 37 gives the result of applying t-SNE 
to the six segment centroids. 
 

                                                           
9 t-SNE is a dimensionality reduction technique that is especially suited to reducing high-dimensional data into a space of two or three 
dimensions (van der Maaten et. al. 2008) 
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The resulting chart suggests that segments within both the transition and docking segments share the same localised 
space within the remapped axis. However, the interpretation of t-SNE results must be treated with caution as the 
remapped axis do not have any interpretable meaning.  
 

 
Figure 37: T-SNE plot of segment centroids mapped to two dimensions; size relates to the number of 
examples in each segment. As axes generated by t-SNE have no interpretable meaning, the results of 

these charts are indicative rather than definitive 
 
 
 
T-SNE can also be used to illustrate the temporal order to the segments. With reference to the discussion of the six 
segments in an earlier section, it is reasonable to suggest that a ship entering port with the intention to dock will pass 
through each of the segments in a specific order. The ship will start by transitioning into the port and then pass into the 
general transition segment. It will then begin the docking procedure, which will consist of movement though each of the 
three docking modes, initial, mid phase and onto terminal phase (Figure 38). The ship will then move to the docked 
segment. The expected order through the segments is therefore: 

• transitional border phase 

• transitional general phase 

• docking initial phase 

• docking mid phase 

• docking terminal phase 

• docked 

Transition 
General phase

Docking  
Terminal phase

Docked

Docking 
Mid phase

Docking 
Initial phase    

Transition
Border phase
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Figure 38: T-SNE plot of segment drivers mapped to two dimensions, showing the temporal progression through the 

segments for a ship entering port and going on to dock 

4.1. Voyage classification 
Once the centroids that define each of the six segments have been generated, it is a simple process to classify the 
behaviour of a ship at any point in its voyage by applying the segmentation to the preceding two minutes of AIS data.  
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Figure 39: Behavioural classifications for ships passing through port, (from green, through amber to red represents an 

increasing density of AIS points) 
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Figure 39 gives the classified tracks of three ships that transition through Felixstowe. In the first two charts, both ships 
transition through the port with one turning east and the other heading north-west. In both cases the behaviour of the 
ship is classified as transitional general phase throughout the journey. In the third chart the ship again travels north west 
through the port; however, in this case there is a small period where the ship accelerates, moves into the transitional 
border phase before slowing down and returning to the transitional general phase.  
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Figure 40: Behavioural classifications for docking ships, (from green, through amber to red represents an increasing 

density of AIS points) 
 
More interesting results are observed with ships that dock within the port (see Figure 40). The ship in the left most chart 
follows the expected progression through the behavioural segments, namely transition, declaration through the docking 
phases before finally docking. The ship in the second chart is initially classified into the docking initial phase, which 
suggests that this ship enters port at a much lower speed and is slowing down. The ship then decelerates further, increases 
its rate of turn and moves through the docking mid and terminal phases. At this point, the ship accelerates and moves 
back into the docking mid phase segment before decelerating through the docking terminal phase and onto the docked 
segment. It is suggested that this behaviour is indicative of the ship manoeuvring into the prevailing current to aid the 
docking procedure. In the final chart the ship moves through the segments slowing down and increasing its 
manoeuvrability before entering the docking terminal phase segment. It then accelerates and enters the initial docking 
segment before decelerating, passing through the remaining docking segments and onto the docked segment. This 
behaviour is less clearly understood. However, it may be caused by the ship reducing speed to wait for an available berth 
before redirecting to a different berth. 
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5. Predicting delays 
The unsupervised approach detailed above is used to classify the behaviour of a ship into a number of a behavioural states 
that change throughout the ship’s voyage and specifically in and around port. The next area of investigation focused on 
predicting the likelihood that a ship would be delayed and arrive at its intended destination sometime after its estimated 
time of arrival. The objective of this study was not to develop an optimal model that could be used in a practical sense to 
predict delays, instead development followed a proof-of-concept approach, where the capability to predict delays was 
demonstrated and the various features of the prediction identified. 
 
Unlike the previous example where ships were classified using an unsupervised approach (k-means), delays were 
predicted using supervised machine learning. A series of binary target fields were derived that indicated whether a ship 
was delayed or not. To do this, both the Automatic Identification System (AIS) and Consolidated European Reporting 
System (CERS) datasets were used and a means by which they could be joined was developed.  
 
The AIS data provides a set of GPS locations covering the time window the AIS equipment was operational onboard the 
ship. However, these points are not organised into separate voyages. By joining the AIS and CERS datasets, one dataset 
was generated combining the information on voyages and arrival times plus the information which can be used to derive 
features relating to ship behaviour from their GPS locations.  
 
The common identifier between the AIS and CERS data is Maritime Mobile Service Identity (MMSI, the unique identifier 
of each ship). To merge the two datasets together they were first inner joined on MMSI, the datasets were then filtered 
by restricting each timestamp within the AIS to its closest estimated time of arrival (ETA) or estimate time of departure 
(ETD) (both ETA and ETD were considered since the AIS data contained both the inbound and outbound portions of the 
journey). Records were retained where the ETA or ETD fell within 24 hours of the timestamp. As it is possible for more 
than one ETA or ETD to meet these criteria, the ETA or ETD closest to the timestamp was selected. After merging the 
complete dataset included 727 voyages relating to 235 unique ships. 
 
Delays were calculated by subtracting the ETA from the Actual Time of Arrival (ATA), both these fields are contained within 
the CERS data. One feature of the data was that ETA may be updated throughout the journey of a ship its crew. 
Consequently, the last ETA is updated to match the ATA, giving the impression that the ship is not delayed. To overcome 
this the ETA from the message nearest to 24 hrs before the ATA was used. This aligns with the requirement that a CERS 
report must be made at least 24 hours in advance of arrival or departure. As this information is not available in the CERS 
data download, an automatic process was written to extract this information (with permission) from individual CERS 
messages. 
 
As the threshold at which the length of delay becomes operationally critical differs for different situations, five binary 
target fields were created, each relating to different delay thresholds - these were 15, 30, 60, 90 and 120 minutes. 
 
To explore all the factors that may contribute to delays, several features were taken and derived from both the AIS and 
CERS datasets. At each point on a ship’s journey the following features were available: 
 
Time and seasonality: 

• minute of the hour 

• hour of the day 

• day of the week 

• week of the year 

• month of the year  
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Ship type: 

• gross tonnage 

• ship type 

• hazmat cargo flag 

• previous delay flag 
 

Ship dynamics: 

• SOG 

• ROT 

• acceleration 

• distance from last port of call 
 

Ship classification 

• one of six segment classifications calculated at every AIS point during this voyage of the ship 
 

Local loading 

• distance to nearest ship 

• number of ships within 10m, 50m, 100m, 500m, 1000m, 1000m+ 
 

Port separation 

• distance between previous and intended ports 
 

Port loading 

• number of ships within port boundary 

• number of ships within port boundary by ship type 

• number of ships within port boundary by segment classification 
 

Weather in port (average for day unless stated, taken from National Center for Environmental Information) 

• temperature 

• dew point 

• sea level pressure 

• station pressure 

• visibility 

• wind speed 

• maximum wind speed 

• maximum and minimum temperature 

• fog, rain, drizzle, snow, ice indicator 
 
To mitigate the effects of extreme (large or small) delay rates and to compare predictive performance across models 
predicting the five different delay definitions (15, 30, 60, 90 and 120 minutes), the development samples were balanced 
to contain equal numbers of delayed and non-delayed ships10. A 20% test dataset was randomly sampled and stratified 
on the target delayed field so that balanced outcomes were maintained within both training and test datasets. The test 
dataset was used to independently test the performance of each model. Training and test performance were compared 
to ensure overfitting was not present. 
 

                                                           
10 It is noted that before any practical deployment of the model, the output from a classifier trained upon balanced outcomes should 
be adjusted to match expected delay rates 

file:///C:/Users/willis5/AppData/Roaming/Microsoft/Word/www7.ncdc.noaa.gov
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Several ensemble-based machine learning classifiers were investigated including Random Forest, AdaBoost and Gradient 
Boosted Trees11; the performance across all was broadly comparable. As a slight performance increase was obtained with 
an XGBoost algorithm12 using the default hyperparameters (maximum tree depth of two, 100 independent estimators and 
a learning rate of 0.05), this approach was used as the preferred approach. To explore the relationship between model 
performance and delay time, an XGBoost model was trained on each of the target fields. Results are shown in Table 4 
 

 Sample size 
Delay threshold Training Test 

15 minutes 148,416 37,104 
30 minutes 168,794 42,198 
60 minutes 141,928 35,258 
90 minutes 121,588 30,398 

120 minutes 102,300 25,576 

 
Table 4: Training and test dataset sizes. A delay threshold of 15 minutes indicates that a ship is 

deemed as being delayed if it arrives 15 minutes after its estimated arrival time 
 
Figure 41 gives the results of training. It can be seen that with the exception of the 15-minute delay case, model 
performance increases with increasing delay threshold. This result is expected when one considers that larger thresholds 
are indicative of more extreme delays and therefore more discrimination should be evident between the features of 
delayed and non-delayed ships, making the predictive task a simpler one. 
 

 
Figure 41: Test and training dataset accuracy when predicting delays of 15, 30, 60, 90 and 120 

minutes. Accuracy is defined as the number of correct classifications divided by the total 
number of cases. Accuracy for a random classifier upon a balanced sample classifier is 0.5 

 
 

                                                           
11 Random forests (Ho, 1995), AdaBoost (Freund, 1999) and Gradient boosted trees (Friedman, 1999) are all ensemble based 
supervised learning algorithms where a series of weak learnings are combined to form a single ensemble of weak classifiers.  The 
ensemble of weak classifiers effectively decreases the variance of the model without increasing the bias. 
12 XGboost is a development of gradient boosting specifically developed to operate within a distributed parallel process environment 
(Chen et. al., 2016) 
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Focusing on the model predicting the most punitive definition of delay, a 15-minute threshold; precision was measured 
as 69% indicating that when the model predicts a delay it is correct in 69% of cases. Recall of 80% indicates that when a 
ship was delayed the model correctly predicts this delay in 80% of cases. 
 
The standardised contribution of each feature in the model is shown in Table 5. Features selected during training fell into 
the weather, seasonality, port loading, local loading and ship type groups. The most powerful feature in the model was 
“distance between previous and intended port” with a standardised importance of 16%, whilst the weakest feature “day 
of the week” had an importance of under 1%.  
 

Feature 
 
Contribution 

Distance between previous and intended port 0.164 
Hour of the day 0.160 
Maximum daily temperature 0.137 
Sea level pressure 0.127 
Gross tonnage 0.100 
Visibility 0.040 
Hazardous cargo on board 0.040 
Wind speed 0.030 
Minimum daily temperature 0.027 
Port loading (tugs) 0.017 
Port loading (cargo ships) 0.010 
Distance to nearest ship 0.007 
Day of the week 0.003 

 
Table 5: Standardised feature importance by feature 

 
Surprisingly, ship-dynamics did not feature in the final model. This may be a result of the fact that AIS data was limited to 
the area in and around port (the furthest AIS point being 2.5km from the port datum). Consequently, behavioural changes 
that are indicative of a delay (such as a positive acceleration or a higher than expected speed) are not captured within the 
AIS data used to train the model. 
 
Additional insights can be uncovered by exploring the relationship between the target field expressed as delay rate and 
each feature on a univariate basis. This approach does not account for the combinatorial effect of features that will be 
captured by the machine learning approach. For example, the weather in port is of less importance for a ship that is sailing 
several thousands of kilometres from the port in question and only increases in importance when the ship approaches 
port. Consequently, weather becomes more predictive when considered on a multivariate basis and in combination with 
the “distance to port” and “current speed” features. 
 
Figure 42 gives the results of such an analysis for a selection of noteworthy model features. Highlights include: 

• ship delays are less likely to occur in the early hours of the morning and during the late afternoon and evening  

• there is an increased likelihood of a delay occurring at the start of the working day and during the lunchtime window  

• delays are generally more likely to occur in poorer weather conditions; this is clearly shown in both the temperature 
and visibility charts and specifically for temperatures below 12 degrees and visibility of less than 13 miles  

• seasonality is also indicative of delays with ships arriving in the months of August, September and October less likely 
to suffer delays, with ships arriving in February, March, April and May more likely, it is suggested that seasonality may 
be related to weather 

• if a ship is not carrying hazardous cargo it is less likely to be delayed  
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Finally, the likelihood of being delayed increases linearly with the number of tugs operating within the harbour. It is 
suggested that as many larger ships require tugs this feature is indicative of the number of ships manoeuvring into berth 
and therefore the availability or otherwise of suitable berths. It is likely that this feature is related to the segment based 
on port loading features, specifically those relating to the docked and docking segments. 
 
 

  
Hour of the day 

 
Maximum daily temperature (C) 

 

 
 

Month of the year 
 

Visibility (miles) 
 

  
Hazardous cargo onboard 

 
Port loading (tugs) 

Figure 42: Univariate analysis for a selection of notable model features giving delay rates relative to 
background balanced delay rate (0.5) 
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The proof-of-concept model discussed above has demonstrated that the development of a more powerful model 
predicting delays is a feasible and achievable objective. It is suggested that if additional data covering all major UK ports 
and the surrounding waters were extracted, more powerful machine learning approaches such as deep learning could be 
applied. These approaches would more accurately capture nonlinearities within the data and further increase model 
performance. However, there is concern regarding the accuracy and robustness of the delays flags used as a target within 
the training data (derived from the ETA field within the CERS dataset), consequently this should be investigated and if 
necessary addressed as a priority in any future work. In addition, more emphasis should be placed upon the development 
and investigation of a wider and more predictive suite of features, including: 
 

• weather data at a more granular resolution (at least hourly) 

• AIS data covering a larger geographic area (open sea and not just the area immediately surrounding each port) 

• AIS data taken from satellites that fills base-station coverage gaps 

• deviation from expected behavioural footprints 

• changes in ship behaviour taken over time 

• dynamic interactions between ships 

• cargo pricing (most notably for liquid bulk such as LNG, crude oil and other oil products) 

• port opening data (staffing, port capacity and so on) 

• breaking down hazardous materials by the type of material 

• tidal information 
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6. Future work 
Once model performance has been optimised, enabling the model to be used to predict delays in a practical sense, there 
are several areas where it could be applied to understand port characteristics, operation and utilisation. Some potential 
areas of interest are discussed below.  
 
Early indicators of GDP 
Gross Domestic Product (GDP) is a measure of the value of all goods and services produced by a country in a given period. 
It is essentially a measure of the economic performance of a country. GDP figures are calculated and released on a 
quarterly basis resulting in a degree of latency between releases. The Consolidated European Reporting System  and 
Consolidated European Reporting System (CERS) data could be used to explore, understand and capture these 
relationships between GDP and freight transport volumes. Supervised machine learning techniques could then be applied 
to produce early indicators of GDP and support GDP based decision-making in the period between formal quarterly 
releases. More work needs to be undertaken to understand what is being carried onboard ships as this information would 
add significant weight to this analysis. 

  
Time t 

Felixstowe and Southampton are subject of medium 
levels of operational stress 

 

Time t + 1.  
Increased operational stress in the south west indicates 
demand is likely to outstrip capacity in the near future 

 
Figure 43: Hypothetical plot showing a simulated scenario of operational stress at time t and t + 1 

Size represents predicted volume of freight at port 
Note: These charts are illustrative and are not intended to illustrate actual operational characteristics 

High operational stress 

Increased operational stress 

Low operational stress 
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Port loading simulation 
Consider a snapshot of ship position and dynamics as defined by AIS data, in and around the UK ports at a given point in 
time. It follows that this snapshot effectively defines the shipping state across UK waters. A delays model could be used 
to predict the likelihood of each ship arriving late into its intended port. This data could be combined with ETA and 
aggregated to port level to give an indication of port loading into the future. Information relating to each port (staffing 
levels, capacity, operational efficiency and so on) could then be combined with port loading to give a measure of 
operational stress13 at each port at that point in time. Standard simulation algorithms could then be applied to determine 
port loading into the future (see Figure 43). The next step would be to explore and simulate the knock-on impact of 
increased port loading upon local infrastructure such as the road network, provision of goods and environmental impacts.  
 
Scenario planning 
Simulation can be used to estimate and understand what will happen in the near future. Scenario planning uses “what-if” 
analysis to explore and understand what could happen if the dynamics that define the operating state of the system are 
changed or modified. For example, a stress analysis would explore the effects upon port loading, road utilisation, supply 
of goods and environmental impact under the following scenarios:  
 

• port loading and unloading capacity is reduced or increased 

• port staffing volumes are increased, for example, changed to favour weekends or late evenings 

• resources are taken from one port and allocated to another  

• ships are rerouted to different ports 

• ships carrying hazardous materials are given priority in port 

• oil prices change or are subjected to large daily fluctuations 

• export and import levels change due to Brexit 

• temporary closures of ports due to unforeseen factors (industrial action, accidents, terrorism)  

• impact of global warming and the subsequent increases in sea levels and changes in tidal patterns 
 
Scenario planning could be used to support the decision-making process by being incorporated into an online tool that 
would allow the user to quickly explore user-defined scenarios (including those detailed above) in a near real-time and 
zero-risk environment. Various shipping states taken either historically, in real time, or estimated into the future could be 
generated and the impact explored and quantified in each case. 
 
Port operation optimisation 
A further area of interest lies with the application of search-based heuristics such as genetic algorithms. These could be 
used to optimise a defined set of parameters that define the design or operation of a port so as to minimise or maximise 
one or more operational parameters of that port. Examples may include: 
 

• minimise time at berth 

• minimise the number of delayed ships 

• maximise number of ships processed in a day 

• minimise total time ships wait for a dock in a given time window 

• minimise bottlenecks at certain times of the day 

• minimise environmental impact 

• minimise road loading during rush hour 

• minimise operations stress across all ports 

• maximise utilisation of road network on weekends 
 
                                                           
13 Operational stress is defined as the difference between demand and capacity 
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To ensure that each optimised solution remains feasible from an operational perspective, optimisation should be 
constrained so as not to violate any one of many business based rules. Contextual examples may include:  
 

• no ships may dock at certain times of the day 

• no more than a maximum number of ships can be docked at any time of the day 

• demand cannot exceed available resource at any point 

• a minimum number of berths must be occupied throughout the day 

• loading must be broadly uniform across all berths within the port  
 
As with simulation and scenario planning, optimisation could be deployed within an integrated tool, further augmenting 
the power of the manual decision support and operational domain exploration.  
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7. Potential applications outside the maritime industry 
The work detailed in this report has been developed with the maritime industry, specifically freight ships and tankers, in 
mind. However, the tools and techniques discussed here may easily be applied to a broader set of applications that are 
based upon the movement and relationship between individual entities. These may include: 
 
Aircraft (military and civil) - Understand the movements of aircraft in and around airports and within designated airways.  
 
Lorries / haulage - Explore the behaviour and environmental impact of traffic on the UK road network.  
 
Crowd dynamics. - Simulate the response of crowds to a number of scenarios in and around open spaces, buildings and 
arenas. Optimise building design to minimise the risk and impact of potentially dangerous situations (for instance crowd 
density during emergency evacuations). 
 
Movement of money - Classify the movement of money within, into and out of the UK, identify and predict criminal 
behaviour patterns. Quantify the financial impact of Brexit. 
 
Internet traffic - Understand the movement of information around the internet. Predict future load patterns and data 
bottlenecks. Optimise server configuration to satisfy future demand. 
 
Professional sports - Analyse the behaviour of players during games, identify successful tactical responses to opposition. 
Understand the relationship between individual behaviour and team position. Predict the likelihood of injury and identify 
early indicators of impending injury. 
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8. Summary 
This report has outlined the work undertaken by the Data Science Campus to explore the operation, utilisation and 
relationships between ports in the UK at a macro level and the behaviour and operational characteristics of ships at a 
micro level. 
 
Two data sources have been investigated, the Consolidated European Reporting System (CERS) and the Automatic 
Identification System (AIS). A high-level analysis of the CERS data identified several pieces of notable insight. There are a 
handful of ports within the UK that are more likely to either load or unload hazardous materials when compared with UK 
ports in general. Other ports have clear and specific links with other ports, for instance ships leaving Belfast generally 
travel to other UK destinations whereas ships leaving Felixstowe are far more likely to travel to ports in the EU. It has been 
shown that AIS can be extracted, decoded and stored within a Hadoop Distributed File System (HDFS) environment. This 
data can then be processed and the behaviour of individual ships visualised by overlaying on charts. 
 
The rate of turn variable in the AIS data was found to be erroneous and unsuitable for use; this necessitated the 
development of a replacement variable, which appears to have worked well. In addition, the AIS data was found to contain 
a degree of noise; this sensitivity was reduced by aggregating the speed and manoeuvrability of a ship over a window of 
two minutes and then converting to a state vector. This approach significantly improved the robustness of the 
segmentation based classifier. When the classifier was applied to a selection of ships on their journey into port, the journey 
was decomposed into a series of distinct, unique and robust phases. 
 
Several machine learning approaches were developed to predict the likelihood a ship would be delayed in arriving at port. 
XGBoost was found to give marginally better performance and was used as the preferred proof-of-concept algorithm. 
Comparable performance within both the training and development samples suggests the algorithm trained well and 
overfitting was not present to any significant degree. A univariate analysis of the more notable model features gave 
additional insight into the relationship between weather, seasonality, port loading, ship behaviour and delays. The delays 
model demonstrated that the development of a more powerful model predicting delays is a feasible and achievable 
objective. It is suggested that if additional data covering all major UK ports and the surrounding waters were extracted, 
more powerful machine learning approaches such as deep learning could be applied. These approaches would more 
accurately capture nonlinearities within the data and further increase model performance. 
 
Once model performance has been optimised, there are several areas where the model may be deployed: port loading 
simulation, scenario planning and port operation optimisation. 
 
Although the work detailed in this report has been developed with the maritime industry in mind, it is suggested that the 
tools and techniques identified and developed here may easily be applied to a far broader set of applications that are 
based upon the movement and relationship between individual entities and covering areas as diverse as crowd dynamics, 
internet traffic and the movement of financial funds. 
 
 

Code repository 
All relevant code relating to this project is available in the Github repository.  
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The Data Science Campus at the ONS 

The Data Science Campus applies data science, and builds skills, for public good across the UK and internationally. We 
work at the frontier of data science and Artificial Intelligence (AI) – building skills and applying tools, methods and practices 
– to create new understanding and improve decision-making for public good. 
 
The goals of ONS’s Data Science Campus are to investigate the use of new data sources, including administrative data and 
big data for public good and to help build data science capability for the benefit of the UK. A new generation of tools and 
technologies is being used to exploit the growth and availability of these new data sources and innovative methods to 
provide rich informed measurement and analyses on the economy, the global environment and wider society. 
 
The Data Science Campus was established within the Office for National Statistics (ONS) in 2017 with a core of well-
qualified professionals, involving a strong network of third party participants in the mission of the Campus. We have set 
up a series of data projects that provide insight into key policy themes. We created new learning and development 
pathways in data science at a range of different levels from Level 4 Apprenticeships to providing support for PhDs and 
post-doctoral projects. We are located at ONS’s Newport site in South Wales and have smaller unit in ONS’s London and 
Titchfield office. 
 
More information can be found at the Data Science Campus website.  
 

  All content is available under the Open Government Licence v3.0, except where otherwise stated 

  

https://datasciencecampus.ons.gov.uk/
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